Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Materials

Plasmonic photocatalysts Au/g-C₃N₄/NiFe₂O₄ nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution

Jian Zeng ^a, Ting Song ^a, Meixiang Lv ^a, Tingting Wang ^b, Jiayi Qin ^a and Heping Zeng *a,b

^a Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, School of

Chemistry and Environment, South China Normal University, Guangzhou, 510006, P. R. China.

^b State Key Laboratory of Luminescent Materials and Devices, Institute of Functional Molecules,

School of Chemistry and Chemical Engineering, South China University of Technology,

Guangzhou, 510641, P. R. China.

Corresponding author: Tel: +86-20-87112631; Fax: +86-20-87112631; E-mail: hpzeng@scut.edu.cn;

Fig. S1 Photocatalytic hydrogen evolution testing system.

Fig. S2 XRD patterns of a series of NiFe₂O₄/g-C₃N₄ (a) and Au/NiFe₂O₄/g-C₃N₄ nanocomposites (b).

Fig. S3 FT-IR spectra of a series of NiFe₂O₄/g-C₃N₄ nanocomposites, g-C₃N₄ and NiFe₂O₄, respectively.

Fig. S4 Elemental mapping of 1.0 wt% Au/4NFCN.

Fig. S5 The XPS spectra survey of 1.0 wt% Au/4NFCN.

Fig. S6 The band gap value of NiFe₂O₄, g-C₃N₄, 4NFCN, 1.0 wt% Au/NiFe₂O₄, 1.0 wt% Au/g-C₃N₄ and 1.0 wt% Au/4NFCN was estimated by Kubelka-Munk equation.

Fig. S7 The UV-vis images of a series of $g-C_3N_4/NiFe_2O_4$ nanocomposites and $Au/g-C_3N_4/NiFe_2O_4$ nanocomposites.

Fig. S8 GC Chromatogram of hydrogen production by the representative photocatalysts.

Figure. S9 The XRD patterns of 1.0 wt% Au/4NFCN before and after the stability test.

Figure. S10 The VB XPS of pure NiFe₂O₄ and pure g-C₃N₄.

Fig. S11 The PL spectra of $g-C_3N_4/NiFe_2O_4$ and $Au/g-C_3N_4/NiFe_2O_4$ nanocomposites.

Fig. S12 Transient photocurrent responses g-C₃N₄/NiFe₂O₄ and Au/g-C₃N₄/NiFe₂O₄ nanocomposites.

Determination of AQY values

Table S1 The hydrogen evolution rate, S_{BET}, pore volume and average pore size of as-prepared samples.

Fig. S1 Photocatalytic hydrogen evolution testing system.

Fig. S2 XRD patterns of a series of $g-C_3N_4/NiFe_2O_4$ (a) and $Au/g-C_3N_4/NiFe_2O_4$ nanocomposites (b).

Fig. S3 FT-IR spectra of a series of $g-C_3N_4$ /NiFe₂O₄ nanocomposites, $g-C_3N_4$ and NiFe₂O₄, respectively.

Fig. S4 Elemental mapping of 1.0 wt% Au/4NFCN.

Fig. S6 The band gap value of NiFe₂O₄, g-C₃N₄, 4NFCN, 1.0 wt% Au/NiFe₂O₄, 1.0 wt% Au/g-C₃N₄ and 1.0 wt% Au/4NFCN was estimated by Kubelka-Munk equation.

Fig. S7 The UV-vis images of a series of g-C₃N₄/NiFe₂O₄ nanocomposites and Au/g-C₃N₄/NiFe₂O₄ nanocomposites.

Fig. S8 GC Chromatogram of hydrogen production by the representative photocatalysts.

Figure. S9 The XRD patterns of 1.0 wt% Au/4NFCN before and after the stability test.

Figure. S10 The VB XPS of pure NiFe₂O₄ and pure g-C₃N₄.

Fig. S11 The PL spectra of g-C₃N₄/NiFe₂O₄ and Au/g-C₃N₄/NiFe₂O₄ nanocomposites.

Fig. S12 Transient photocurrent responses g-C₃N₄/NiFe₂O₄ and Au/g-C₃N₄/NiFe₂O₄ nanocomposites.

Determination of AQY values¹

Apparent quantum efficiency (AQY) was measured under identical photoreaction conditions except that the incident monochromatic light with a band-pass filter (λ = 420 nm, half width =15 nm) and an irradiatometer. The hydrogen yields of 1 h photocatalytic reaction in one continuous reaction under visible light with the wavelength of 420 nm were measured. The incident photon number was determined by a calibrated Si photodiode (SRC-1000-TC-QZ-N, Oriel), and the AQY value was calculated using eqn (1).

AQY (%) = $\frac{2 \times \text{Number of evolved H}_2 \text{ molecules}}{\text{Number of incident photos}} \times 100\%$ (1)

Table S1 the elemental composition of 1.0 wt% Au/4NFCN.

Elemental	С	Ν	0	Fe	Ni	Au
Wt%	20.84	11.09	15.49	39.36	12.20	1.01
At%	39.32	17.95	21.94	15.97	4.71	0.12

Reference 1. J. P. Huo, H. P. Zeng, J. Mater. Chem. A, 2015, **3**, 6258.