Drop-on-Demand microdroplet generation: a very stable platform for

single-droplet experimentation

Bartholomew S. Vaughn, Philip J. Tracey, Adam J. Trevitt*

School of Chemistry, University of Wollongong, New South Wales, 2522, Australia

*corresponding author: adamt@uow.edu.au

Supplementary Information

Figure S1 Bright-field images of the droplet interaction region. Each frame shows the dispenser capillary tip, sync laser scattering, fluorescence emission and the resulting droplet from the corresponding waveforms in Figure 1.

Amplitude (V)	Waveform				
Section number	А	В	С	D	Е
1	84	84	80	84	84
2	-42	-42	-	-42	-42
3	84	84	-	84	84
Pulsewidth (us)	Waveform				
Section number	А	В	С	D	Е
1	17	40	37.1	28	40
2	5	5	-	5	5
3	14	10	-	28	20
Total Pulsewidth (us)	36	55	37.1	61	65

TABLE S1. Parameters of the waveforms shown in Figure 2.

TABLE S2. Fitted parameters for each droplet shown in Figure 2.

	Droplet				
	A	В	С	D	E
Imaged					
Diameter	16	23	36	45	51
(pixels)					
Radius (nm)	10700 ± 5	13420 ± 14	21020 ± 45	28100 ± 150	31400 ± 1400
n _A	1.33 ± 0.01	1.39 ± 0.02	1.35 ± 0.03	1.30 ± 0.01	1.31 ± 0.6
$n_{\rm B} ({\rm nm}^2)$	2465 ± 23	-1033 ± 27	-637 ± 81	769 ± 83	355 ± 99
Refractive					
index*	1.34 ± 0.04	1.39 ± 0.05	1.35 ± 0.14	1.30 ± 0.14	1.31 ± 0.18
(575 nm)					

*refractive index $n(\lambda) = n_{A+n_B}/(\lambda^2)$

Figure S2 1500 consecutive single droplet fluorescence spectra. The microdroplets were generated using the square wave pulse labeled E in Figure 2. The inset shows an expansion of the single WGM peak marked with an arrow.

Figure S3 A single droplet fluorescence spectrum (bottom, black) to an average of 1500 single droplet spectra (top, red) from Figure S2.

Experimental		Simulated position	
positions (nm)	Assignment	(nm)	Difference (nm)
567.198	TE ₂₇₃	567.177	0.021
568.269	TM ₂₇₈ ⁴	568.295	-0.026
569.082	TE_{272}^{5}	569.079	0.003
570.187	TM ₂₇₇ ⁴	570.191	-0.004
570.996	TE_{271}^{5}	570.994	0.002
572.106	TM ₂₇₆	572.101	0.005
572.921	TE_{270}^{5}	572.922	-0.001
574.031	TM ₂₇₅	574.023	0.008
574.858	TE_{269}^{5}	574.863	-0.005
576.812	TE_{268}^{5}	576.817	-0.005
578.787	TE_{267}^{5}	578.785	0.002
580.812	TE_{266}^{5}	580.767	0.045
582.851	TE_{265}^{5}	582.763	0.088
584.887	TE_{264}^{5}	584.772	0.115
-	TE_{274}^{5}	565.288	-
-	TM ₂₇₉ ⁴	566.411	-
-	TM ₂₇₄	575.958	-
-	TE_{280}^{4}	565.621	-
-	<i>TE</i> ⁴ ₂₇₉	567.499	-
-	TE_{278}^{4}	569.390	-
-	TE_{277}^{4}	571.293	-
-	TE_{276}^{4}	573.209	-
-	<i>TE</i> ⁴ ₂₇₅	575.139	-
-	<i>TE</i> ⁴ ₂₇₄	577.081	-
-	TE_{273}^{4}	579.037	-
_	TE_{272}^{4}	581.006	-
-	TE_{271}^{4}	582.988	-
-	TE_{270}^{4}	584.985	-

TABLE S3. Experimental and simulated MDR positions used in the fitting of droplet C. In red are predicted positions.

Figure S4 Single droplet emission spectrum using waveform C with WGM assignments. Black bars represent the fitted WGMs – data from Table S3. The red bars are predicted WGMs (as listed in Table III).

Experimental	Assignment	Simulated position	
positions (nm)	Assignment	(nm)	Difference (nm)
563.880	TE_{137}^{3}	563.859	0.021
565.639	TM ₁₃₆	565.625	0.014
567.571	TE_{136}^{3}	567.567	0.004
569.359	TM_{135}^{3}	569.362	-0.003
571.326	TE_{135}^{3}	571.326	0.000
573.151	<i>TM</i> ³ ₁₃₄	573.151	0.000
575.134	TE_{134}^{3}	575.137	-0.003
578.992	TE_{133}^{3}	579.001	-0.009
582.922	TE_{132}^{3}	582.919	0.003
586.917	TE_{131}^{3}	586.893	0.024
590.738	TE_{136}^{2}	590.763	-0.025
590.986	TE_{130}^{3}	590.923	0.063
594.797	TE_{135}^{2}	594.789	0.008
598.887	TE_{134}^{2}	598.871	0.016
-	TE_{137}^{2}	586.794	-

TABLE S4. Experimental and simulated MDR positions used in the fitting of droplet A.

TABLE S5. Experimental and simulated MDR positions used in the fitting of droplet B.

Experimental	Assistant	Simulated position	
positions (nm)	Assignment	(nm)	Difference (nm)
566.761	TE_{170}^{5}	566.744	0.017
569.716	<i>TE</i> ⁵ ₁₆₉	569.706	0.010
570.642	TE_{174}^{4}	570.644	-0.002
571.99	TM ₁₇₃ ⁴	571.944	0.046
572.702	<i>TE</i> ⁵ ₁₆₈	572.700	0.002
574.958	<i>TM</i> ⁴ ₁₇₂	574.934	0.024
575.726	<i>TE</i> ⁵ ₁₆₇	575.726	0
576.544	TE_{172}^{4}	576.624	-0.080
577.939	<i>TM</i> ⁴ ₁₇₁	577.957	-0.018
578.779	<i>TE</i> ⁵ ₁₆₆	578.784	-0.005
581.018	<i>TM</i> ⁴ ₁₇₀	581.011	0.007
581.868	<i>TE</i> ⁵ ₁₆₅	581.876	-0.008
585.001	TE_{164}^{5}	585.002	-0.001
587.224	TM_{168}^{4}	587.220	0.004
588.172	TE ⁵ ₁₆₃	588.162	0.010
590.368	<i>TM</i> ⁴ ₁₆₇	590.375	-0.007
591.374	<i>TE</i> ⁵ ₁₆₂	591.357	0.017
593.568	TM ₁₆₆ ⁴	593.564	0.004

Experimental		Simulated positions	
Positions (nm)	Assignment	(nm)	Difference (nm)
568.006	TE ₃₅₉	568.001	0.005
568.249	TM_{365}^{4}	568.248	0.001
569.458	TE_{358}^{5}	569.461	-0.003
569.699	TM_{364}^{4}	569.702	-0.003
570.927	TE_{357}^{5}	570.929	-0.002
572.407	TE_{356}^{5}	572.405	0.002
573.89	TE_{355}^{5}	573.889	0.001
575.378	TE_{354}^{5}	575.380	-0.002
576.878	TE ₃₅₃	576.879	-0.001
578.389	TE ₃₅₂ ⁵	578.387	0.002
579.899	<i>TE</i> ⁵ ₃₅₁	579.902	-0.003
581.428	TE_{350}^{5}	581.426	0.002

TABLE S6. Experimental and simulated MDR positions used in the fitting of droplet D.

TABLE S7. Experimental and simulated MDR positions used in the fitting of droplet E.

Experimental		Simulated positions	
Positions (nm)	Assignment	(nm)	Difference (nm)
565.046	TE_{416}^{4}	565.024	0.022
566.326	TE_{415}^{4}	566.302	0.024
567.581	TE_{414}^{4}	567.587	-0.006
568.88	TE_{413}^{4}	568.877	0.003
569.683	TE_{420}^{3}	569.721	-0.038
570.171	TE_{412}^{4}	570.173	-0.002
571.472	TE_{411}^{4}	571.475	-0.003
572.308	$TE_{418}^{\ 3}$	572.312	-0.004
572.779	TE_{410}^{4}	572.783	-0.004
573.618	$TE_{417}^{\ 3}$	573.616	0.002
574.095	TE_{409}^{4}	574.097	-0.002
574.947	TE_{416}^{3}	574.926	0.021
575.424	TE_{408}^{4}	575.418	0.006
576.748	TE_{407}^{4}	576.744	0.004
577.58	$TE_{414}^{\ 3}$	577.565	0.015
578.074	TE_{406}^{4}	578.077	-0.003
579.413	TE_{405}^{4}	579.416	-0.003
580.764	TE_{404}^{4}	580.761	0.003
582.124	TE_{403}^{4}	582.113	0.011

583.486	TE_{402}^{4}	583.471	0.015
584.862	TE_{401}^{4}	584.835	0.027