Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

RSC Advances

Dynamic Article Links►

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Supplementary Information

Hybrid Magnetic Irish Moss/Fe₃O₄ as a Nano-Biocatalyst for Synthesis of Imidazopyrimidine Derivatives

Behnaz Hemmati,^a Sharzad Javanshir^{a*} and Zahra Dolatkhah^a

^aHeterocyclic chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.

Content

1. Table 3. The Synthesis of imidazopyrimidine derivatives 7, 8, 9	S ₂ -S ₃
2. References	S ₃ -S ₄
3. X-ray diffraction pattern of Fe₃O₄@IM	S_4
4. EDX analysis of Fe3O4@IM a) before reaction b) after recycling	S_5
5. IR analysis of catalyst a) before and b) after six subsequent run	S_6
6. TGA analysis of Fe ₃ O ₄ @IM	S_6
7. VSM analysis of Fe ₃ O ₄ @IM and Fe ₃ O4	S_7

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Supplementary Information

1. Table 3. The Synthesis of imidazopyrimidine derivatives 7, 8, 9.

Entry	Product	Aldehyde	CH acid	Time (min)	Yield (%)	MP (°C)	
						Observed	Reported
1	7a	4-F-C ₆ H ₄	4	10	94	267-269	270 ¹
2	7b	4-Cl-C ₆ H ₄	4	15	95	235-238	238 ²
3	7c	2-Cl-C ₆ H ₄	4	20	95	235-237	236-238 ³
4	7d	2,4-Cl-C ₆ H ₃	4	15	95	250-252	248 ²
5	7e	3-Br-C ₆ H ₄	4	15	94	237-240	238-240 ³
6	7f	4-Br-C ₆ H ₄	4	20	94	318-320	317-319 ³
7	7g	4-CN-C ₆ H ₄	4	25	96	237-238	-
8	7 i	3-NO ₂ -C ₆ H ₄	4	20	90	232-235	236 ²
9	7k	C ₆ H ₅	4	35	89	234-236	235-236 ²
10	71	4-Me-C ₆ H ₄	4	45	88	205-207	205 ¹
11	7m	4-OMe-C ₆ H ₄	4	65	85	232-234	230-233 ⁴
12	70	3-OH-C ₆ H ₄	4	50	89	233-235	234-235 ¹
13	7р	4-OH-C ₆ H ₄	4	60	90	234-235	234-235 ¹
14	8b	$4-CI-C_6H_4$	5a	25	94	>300	337-3395
15	8c	2-CI-C ₆ H ₄	5a	30	94	>300	>3004
16	8d	2,4-CI-C ₆ H ₃	5a	25	95	>300	>3004
17	8e	3-Br-C ₆ H ₄	5a	25	93	300-302	294-296 ⁶
18	8f	4-Br-C ₆ H ₄	5a	30	90	315-316	312-314 ⁵
19	8j	4-NO2-C ₆ H ₄	5a	30	89	>300	>3007
20	8k	C ₆ H ₅	5a	40	87	>300	>3007

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Supplementary Information

21	81	4-Me-C ₆ H ₄	5a	50	88	>300	>300 ⁸
22	8m	4-OMe-C ₆ H ₄	5a	65	89	>300	389 ⁹
23	80	3-OH-C ₆ H ₄	5a	40	91	>300	-
24	8p	4-OH-C ₆ H ₄	5a	60	87	>300	>300 ⁵
25	9b	4-Cl-C ₆ H ₄	5b	20	95	>300	>30010
26	9c	2-Cl-C ₆ H ₄	5b	20	93	>300	>3004
27	9e	3-Br-C ₆ H ₄	5b	25	92	>300	>3004
28	9f	4-Br-C ₆ H ₄	5b	25	94	>300	>3004
29	9j	4-NO2-C ₆ H ₄	5b	25	90	>300	>30010
30	9k	C ₆ H ₅	5b	40	86	309-311	312-313 ⁵
31	91	4-Me-C ₆ H ₄	5b	45	85	295-298	293-295 ⁶

2. References

- 1. Z. Nofal, H. Fahmy and H. Mohamed, Archives of pharmacal research, 2002, 25, 28-38.
- 2. A. Shaabani, A. Rahmati, A. H. Rezayan, M. Darvishi, Z. Badri and A. Sarvari, QSAR & Combinatorial Science, 2007, 26, 973-979.
- 3. M. V. Reddy, J. Oh and Y. T. Jeong, *Comptes Rendus Chimie*, 2014, **17**, 484-489.
- 4. Q. Shao, S. Tu, C. Li, L. Cao, D. Zhou, B. Jiang, Y. Zhang, W. Hao and Q. Wang, *Journal of Heterocyclic Chemistry*, 2008, **45**, 411-416.
- 5. A. Amoozadeh and S. Rahmani, *Journal of Molecular Catalysis A: Chemical*, 2015, **396**, 96-107.
- 6. C. Yao, S. Lei, C. Wang, T. Li, C. Yu, X. Wang and S. Tu, *Journal of Heterocyclic Chemistry*, 2010, **47**, 26-32.
- 7. M. M. Heravi, F. Derikvand and L. Ranjbar, Synthetic Communications®, 2010, 40, 677-685.
- 8. M. R. Mousavi and M. T. Maghsoodlou, *Journal of the Iranian Chemical Society*, 2015, **12**, 743-749.
- 9. B. Insuasty, A. Salcedo, R. Abonia, J. Quiroga, M. Nogueras and A. Sánchez, *Heterocyclic Communications*, 2002, **8**, 287-292.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

10. G. Liu, Q. Shao, S. Tu, L. Cao, C. Li, D. Zhou and B. Han, *Journal of Heterocyclic Chemistry*, 2008, **45**, 1127-1130.

3. X-ray diffraction pattern of Fe₃O₄@IM

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Supplementary Information

4. EDX analysis of Fe3O4@IM a) before reaction b) after recycling

Spectrum 1 Spectr

a)

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

5. IR analysis of catalyst a) before and b) after six subsequent run.

6. TGA analysis of Fe₃O₄@IM

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

