Supporting information

Synthesis of Multi-donor Dyes and Influence of Molecular Design on Dye-sensitized Solar Cells

Ashok Keerthi, ${ }^{\text {a,b }}$ Ming Hui Chua, ${ }^{\text {a }}$ Thuang Yuan Timothy Chan, ${ }^{\mathrm{a}}$ Yeru Liu, ${ }^{\text {b,c }}$ Deepa Sriramulu, ${ }^{\text {a }}$ Qing Wang, ${ }^{\text {b,c }}$ Suresh Valiyaveettil* ${ }^{\text {a,b }}$
${ }^{a}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

[^0]*Contact e-mail: chmsv@nus.edu.sg

5

7

$\mathrm{FeCl}_{3}(0.1 \mathrm{eqv}) \mathrm{CuO}$ (0.1 eqv) rac-BINOL (0.2 eqv) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 eqv)

DNF
$90^{\circ} \mathrm{C}, 18 \mathrm{hr}$

6

2M n-BuLi in Cyclohexane
THF $-78^{\circ} \mathrm{C}$ to r.t.

1b

Scheme S1: Synthesis of intermediate compounds $\mathbf{1 a}$ and $\mathbf{1 b}$.

Synthesis of 4-bromo-N,N-dihexylaniline (6)

4-Bromoaniline ($5 \mathrm{~g}, 29 \mathrm{mmol}$) and 1-bromohexane ($10.2 \mathrm{~mL}, 73 \mathrm{mmol}$) were heated to $130{ }^{\circ} \mathrm{C}$ and stirred for 18 hours. The reaction mixture was cooled to room temperature and 2 M NaOH (50 mL) was added. The aqueous layer was extracted with diethyl ether (2 x 100 mL), the combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure to obtain a black crude product, which was purified using column chromatography on silica gel with hexane as eluent to isolate pale yellow oil (3.62 g , yield 36.7%). MS (EI) m/z $=339.3\left(\mathrm{M}^{+}\right)$, 340.3 (calcd.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta=$ 7.26 - 7.29 (d, 2H), 6.51 - 6.54 (d, 2H), 3.22 - 3.27 (t, 4H,), 1.56 - 1.58 (broad, 4H), 1.34 (s, 12H), 0.94 (s, 6H). Elem. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{BrN}$: C, 63.52%; H, 8.88\%; Br, 23.48, N, 4.12\%; found: C, 63.14%; H, 8.58%; Br, 23.70, N, 4.19\%.

Synthesis of 4-dihexylamino-phenylboronic acid pinacol ester (1a)

Compound 6 ($3.80 \mathrm{~g}, 11.18 \mathrm{mmol}$) was dissolved in anhydrous THF (50 mL) under nitrogen atmosphere and cooled to $-78{ }^{\circ} \mathrm{C}$ in dry ice / acetone bath. n-BuLi in cyclohexane ($15 \mathrm{~mL}, 30$ mmol) was added drop wise and stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hr . To this mixture, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($5 \mathrm{~mL}, 22.8 \mathrm{mmol}$) was added slowly, stirred and gradually
warmed to room temperature. The mixture was added to ice water ($50 \mathrm{~mL}, 0^{\circ} \mathrm{C}$), extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The organic solvent was removed under reduced pressure to obtain brown oil. The crude product was purified over silica gel column using dichloromethane (DCM)/hexane (1:4) mixture as eluent to yield orange oil ($2.72 \mathrm{~g}, 63$ \%). MS (EI) m/z = 387.4 (M^{+}), 387.4 (calcd.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=$ $7.66-7.69(\mathrm{~d}, 4 \mathrm{H}), 6.61-6.64(\mathrm{~d}, 4 \mathrm{H}), 3.27-3.32(\mathrm{t}, 4 \mathrm{H}), 1.60$ (quintet, 4H), 1.33 (s, 24H), 0.91 - 0.94 (t, 6H, $-\mathrm{CH}_{3}$). Elem. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{BNO}_{2}$: C, 74.41%; H, 10.93\%; N, 3.62\%; found: C, 74.26%; H, 10.65\%; N, 3.79\%.

Synthesis of 4-pyrrolidino-1-bromobenzene (8)

1-Bromo-4-iodobenzene ($5 \mathrm{~g}, 17.75 \mathrm{mmol}$), iron(III) chloride ($0.29 \mathrm{~g}, 1.79 \mathrm{mmol}$), copper(II) oxide ($0.14 \mathrm{~g}, 1.76 \mathrm{mmol}$), rac-BINOL ($1.02 \mathrm{~g}, 3.56 \mathrm{mmol}$) and cesium carbonate ($12 \mathrm{~g}, 36.83$ mmol) were taken into 250 mL round bottom flask, connected to vacuum for removing the air and backfilled with nitrogen gas. A solution of pyrrolidine ($1.75 \mathrm{~mL}, 21.32 \mathrm{mmol}$) in DMF (35 mL) was added and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 18 hours. After cooling to room temperature, the mixture was diluted with DCM (100 mL) and filtered to remove insoluble solids. The insoluble residue was rinsed with DCM, filtrate was washed with 1 M NaOH (200 mL) followed by water (100 mL), combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and the crude product was purified using column chromatography with DCM : Hexane (1:10) mixture as eluent to get a white solid (3.41 g , yield 85\%). MS (EI) m/z = 224.1 (M^{+}), 226.1 (calcd.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.26-$ $7.30(\mathrm{~d}, 2 \mathrm{H}), 6.44-6.47(\mathrm{~d}, 2 \mathrm{H}), 3.23-3.27(\mathrm{t}, 4 \mathrm{H}), 1.99-2.03$ (quintet, 4 H$).{ }^{13} \mathrm{C}$ NMR (δ, $\left.75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm}: \delta=146.69,131.66,113.27,47.77,25.43$. Elem. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrN}$: C, 53.12%; H, 5.35%; Br, 35.34, N, 6.19\%; found: C, 53.24%; H, 5.33%; Br, 35.80, N, 6.27\%.

Synthesis of 4-pyrrolidino-phenylboronic acid pinacol ester (1b)

Compound 8 ($3.41 \mathrm{~g}, 15.1 \mathrm{mmol}$) dissolved in anhydrous THF (80 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. To this, $2 \mathrm{M} \mathrm{n-BuLi}$ in cyclohexane ($16 \mathrm{~mL}, 32 \mathrm{mmol}$) was added slowly and stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 hr . 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.2 $\mathrm{mL}, 30.4 \mathrm{mmol}$) was added slowly to the mixture, stirred and allowed to warm up to room temperature. The reaction mixture was added to ice water (50 mL), extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$), combined organic extracts were dried on anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the excess solvent was removed under reduced pressure to obtain a dark brown oil. The crude product was dissolved in minimum amount of diethyl ether, cooled to $0{ }^{\circ} \mathrm{C}$ for crystallization of the compound as pale pink crystals and collected by filtration (2.95 g , yield 71\%). MS (EI) m/z = $273.2\left(\mathrm{M}^{+}\right), 273.2$ (calcd.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.66-7.69(\mathrm{~d}, 2 \mathrm{H}), 6.54-$ 6.57 (d, 2H), $3.30-3.34(\mathrm{t}, 4 \mathrm{H}), 1.98-2.03$ (quintet, 4H), 1.32 (s, 12H). Elem. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BNO}_{2}$: C, 70.35%; H, 8.86\%; N, 5.13\%; found: C, 70.47\%; H, 9.01%; N, 5.21\%.

Figure S1. Enlarged cyclic voltammetry scans of dyes TC1 - TC5 at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ in THF solution. Potentials reported with respect to ferrocene.

Figure S2. UV-vis absorption spectra of dyes (TC1, TC2, TC4 and TC5) on TiO_{2} coated quartz plates. The plates were immersed in 0.25 mM dye solutions in THF for 24 hours and rinsed several times using fresh THF solvent.

Figure S3. IPCE (Incident photon-to-current efficiency) curves of TC1 - TC5 dyes. The electrodes were immersed into a 0.25 mM solution of sensitizer in THF solution.

1H NMR and MS spectra of compound 1a

1H NMR and MS spectra of compound 1b

1H \& 13C NMR of compound 2a

MS spectra of compound 2a

1H \& 13C NMR of compound TC1

FT-IR \& MALDI-TOF of compound TC1

Comment 1

1H \& 13C NMR of compound $\mathbf{2 b}$

1H \& 13C NMR of compound TC2

FT-IR \& MALDI-TOF of compound TC2

1H \& 13C NMR of compound 3c

Mass spectra of compound 3c

1H \& 13C NMR of compound TC3

FT-IR \& MALDI-TOF of compound TC3

Comment 1
Comment 2

1H \& 13C NMR of compound 3b

Mass spectra of compound 3b

1H NMR \& FT-IR of compound TC4

MALDI-TOF of compound TC4

Comment 1
Comment 2

$1 \mathrm{H} \& 13 \mathrm{C}$ NMR of compound 4

Mass spectra of compound 4

1H \& 13C NMR of compound TC5

FT-IR and MALDI-TOF of compound TC5

D:IDatalUserslkeerthi201211303121tc-3_rp10_N231111SRef

[^0]: ${ }^{\text {b }}$ NanoCore-NUSNNI, T-Lab Building, National University of Singapore, 5A Engineering Drive 1, Singapore 117411.
 ${ }^{c}$ Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574.

