Morphology-Controlled Synthesis of WO_{2.72} Nanostructures and Their photocatalytic Properties

Table of content	Ta	ble	of	conte	nt
------------------	----	-----	----	-------	----

	Caption				
Figure S1	Schematic of sample loading method for the SPC measurement.				
Figure S2	SEM image of the urchin-like WO _{2.72} nanostructure.				
Figure S3	EDS spectra of the $WO_{2.72}$ nanowires (a) and the urchin-like $WO_{2.72}$ nanostructures (b).				
Figure S4	Structure illustration of WO_3 and $WO_x(x<3)$.				
Figure S5	Color conversion of the samples.				
Figure S6	SEM images of $WO_{2.72}$ nanostructures obtained by treating at 180°C for 10 h with				
	$C_{WCI6}=0.5g/L$ (a), $C_{WCI6}=1g/L$ (b), $C_{WCI6}=3g/L$ (c) $C_{WCI6}=5g/L$ (c), $C_{WCI6}=7g/L$ (c) and $C_{WCI6}=10g/L$				
	(d).				
Figure S7	SEM images of urchin-like $WO_{2.72}$ nanostructures obtained by reacting for 3h(a), 6h(b),				
	10h(c) and 24h(d);(C _{WCI6} =5g/L, 180°C).				
Figure S8	XRD patterns of WCl ₆ solvothermal treated in different times.				
Figure S9	SEM images of WO _{2.72} nanostructures which were obtained at 120 $^\circ$ C (a), 140 $^\circ$ C (b), 160 $^\circ$ C				
	(c) and 180 $^{\circ}\text{C}$ (d) respectively ;(C_{WCI6}=5g/L, 10h).				
Figure S10	Changing UV-Vis spectra of MB (a), and MO (b) Rh B (c) aqueous solution in the presence of				
	WO _{2.72} nanowires under UV light irradiation.				
Figure S11	UV/Vis absorption spectra of the $WO_{2.72}$ nanowires and urchin-like $WO_{2.72}$ nanostructures				
	after photocatalysis.				
Figure S12	SEM images of the urchin-like $WO_{2.72}$ nanostructures (a) and $WO_{2.72}$ nanowires (b) after				
	photocatalysis.				
Table S1	BET surface areas of $\overline{WO_{2.72}}$ nanowires, urchin-like $WO_{2.72}$ nanostructures and commercial				
	ones.				

Figure S 1 Schematic of sample loading method for the SPC measurement.

Figure S 2 SEM image of the urchin-like $WO_{2.72}$ nanostructure.

Figure S 3 EDS spectra of the $WO_{2.72}$ nanowires (a) and the urchin-like $WO_{2.72}$ nanostructures (b).

Figure S 4 Structure illustration of WO_3 (WO_6 units were connected by co-corner, left) and $WO_X(x<3)$. (WO_6 units were connected partially by co-edge, right).

Figure S 5 Color conversion of the samples.

Figure S 6 SEM images of WO_{2.72} nanostructures obtained by treating at 180°C for 10 h with $C_{WC16}=0.5g/L$ (a), $C_{WC16}=1g/L$ (b), $C_{WC16}=3g/L$ (c) $C_{WC16}=5g/L$ (d) $C_{WC16}=7g/L$ (e) and $C_{WC16}=10g/L$ (f).

Figure S 7 SEM images of urchin-like $WO_{2.72}$ nanostructures obtained by reacting for 3h(a), 6h(b), 10h(c) and 24h(d);($C_{WC16}=5g/L$, 180°C).

Figure S 8 XRD patterns of WCl₆ solvothermal treated in different times.

Figure S 9 SEM images of $WO_{2.72}$ nanostructures which were obtained at 120 °C (a), 140 °C (b), 160 °C (c) and 180 °C (d) respectively ;($C_{WCI6}=5g/L$, 10h).

Figure S 10 Changing UV-Vis spectra of MB (a), and MO (b) Rh B (c) aqueous solution in the presence of $WO_{2.72}$ nanowires under UV light irradiation.

Figure S 11 UV/Vis absorption spectra of the $WO_{2.72}$ nanowires (red) and urchin-like $WO_{2.72}$ nanostructures (black) after photocatalysis.

Figure S 12 SEM images of the urchin-like $WO_{2.72}$ nanostructures (a) and $WO_{2.72}$ nanowires (b) after photocatalysis.

	WO _{2.72} nanowires	Urchin-like WO _{2.72}	Commercial				
material		nanosructures	ones				
BET(m ² /g)	189.3	177.9	11.7				

Table S 1 BET surface areas of WO2.72 nanowires, urchin-like WO2.72 nanostructures and commercial ones.