Photophysical Properties of Di-Schiff Bases: Evaluating the Synergistic Effect of Non Covalent Interactions and Alkyl Spacer in Enhanced Emissions in Solids

Moyna Das, Fayaz Baig and Madhushree Sarkar*

Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus Rajasthan 333031, India; Email: msarkar@bits-pilani.ac.in Phone: +91-1596-515679; Fax: +91-1596-244183

SUPPORTING INFORMATION

General: Infra Red Spectra were taken in FTIR ABB Bomen MB-3000. UV-Visible Spectra and Fluorescence Spectra were taken in Shimadzu spectrophotometer with model UV-2450 and Fluorimax-4 0426C0809, respectively. Proton and Carbon-13 Nuclear Magnetic Resonance (¹H NMR and ¹³C NMR) spectra were recorded on a 400 MHz spectrophotometer (Bruker). Powder X-Ray Diffraction (XRD) were recorded with a Rigaku miniflex II, $\lambda = 1.54$, Cu K α .

Figure S1: IR of L1a

IR (cm⁻¹ KBr pellet): 3418(w), 3171(w), 3047(w), 3001(w), 2947(m), 1666(m), 1628(vs), 1574(w), 489(w), 1443(m), 1304(w), 1203(w), 957(m), 856(w).

Figure S2: ¹H NMR of L1a

Figure S3: ¹³C NMR of L1a

IR (cm⁻¹ KBr pellet): 3418(m), 3055(m), 2962(m), 2916(w), 1643(vs), 1566(vs), 1489(w), 1443(vs), 1358(vs), 1281(s), 1072(m), 1018(m), 756(vs).

Figure S5: ¹H NMR of L1b

Figure S6: ¹³C NMR of L1b

IR (cm⁻¹ KBr pellet): 3418(m), 3271(w), 3055(w), 3032(w), 2908(w), 2843(m),1674(w), 1643(vs), 1574(w),1450(m), 1373(m), 1281(w), 157(w), 1018(s), 972(w), 918(w).

Figure S8: ¹H NMR of L2a

Figure S9: ¹³C NMR of L2a

Figure S10: IR of L2b

IR (cm⁻¹ KBr pellet): 3418(m), 3248(w), 3063(w), 3016(w), 2885(m), 2824(m), 1628(vs), 1574(w), 1489(w), 1443(m), 1373(m), 1265(vs), 1180(w), 1080(m), 1041(m), 910(m), 756(vs).

Figure S11: ¹H NMR of L2b

Figure S12: ¹³C NMR of L2b

Figure S13: IR of L3a

IR (cm⁻¹ KBr pellet): 3394(w), 3271(w), 3055(w), 3024(w),2932(m), 2847(m),2646(w), 1643(vs), 1605(w), 1574(w), 1443(s), 1381(w), 1288(w), 965(w),756(vs).

Figure S14: ¹H NMR of L3a

Figure S15: ¹³C NMR of L3a

Figure S16: IR of L3b

IR (cm⁻¹ KBr pellet): 3418(m), 3240(w), 3086(w),3047(w), 2932(m), 2878(m), 1628(vs), 1574(w), 1489(w), 1443(w), 1350(m), 1281(m), 1180(w), 1080(w), 918(w),764(vs).

Figure S17: ¹H NMR of L3b

Figure S18: ¹³C NMR of L3b

Figure S19: IR of L4a

IR (cm⁻¹ KBr pellet): 3394(w),3148(m), 3001(w), 2939(w), 2854(w), 2716(w), 2106(w), 1643(s), 1589(w), 1551(vs), 1379(vs), 1234(w), 1173(w), 1065(w), 949(w), 825(s).

Figure S20: ¹H NMR of L4a

Figure S21: ¹³C NMR of L4a

IR (cm⁻¹ KBr pellet): 3811(w), 3433(m), 3256(w), 3055(w), 2924(m), 2854(w), 1628(vs), 1582(w), 1443(w), 1412(m), 1381(m), 1281(w), 794(m), 694(s), 571(w).

Figure S23: ¹H NMR of L4b

Figure S24:¹³C NMR of L4b

Figure S25: Experimental Powder XRD of L2a

Figure S27: Experimental Powder XRD of L3b

Figure S29: Experimental Powder XRD of L4b

Figure S30: UV-Visible Spectrum of L1a in MeOH: Concentration : 10⁻⁴M

Figure S31: UV-Visible Spectrum of L1b in MeOH: Concentration: 10⁻⁴M

Figure S32: UV-Visible Spectrum of L2a in MeOH Concentration: 10⁻⁴M

Figure S33: UV-Visible Spectrum of L2b in MeOH Concentration: 10⁻⁴M

Figure S34: UV-Visible Spectrum of L3a in MeOH Concentration: 10⁻⁴M

Figure S35: UV-Visible Spectrum of L3b in MeOH Concentration: 10⁻⁴M

Figure S37: UV-Visible Spectrum of L4b in MeOH Concentration: 10⁻⁴M

Figure S38: PL spectra of (a) **L3a** at an excitation wavelength of 420 nm; (b) **L3b** at excitation wavelength of 320 nm and 420 nm

Figure 39: PL Spectra of (a) **L4a** in different concentrations at an excitation wavelength of 280nm; (b) **L4a** in different concentrations at an excitation wavelength of 450nm; (c) **L4b** in different concentrations at an excitation wavelength of 320nm; (d) **L4b** in different concentrations at an excitation wavelength of 420nm

Figure S40: PL spectra of L2a and L2b in Solid State

Figure S41: PL spectra of L3a in Solid State

Figure S42: PL spectra of L3b in Solid State

Figure S43: PL spectra of L4a in Solid State

Figure S44: PL spectra of L4b in Solid State

λ_{ex}	300 nm		350 nm		400 nm		450 nm		
	Conc.	λ_{em}	Conc.	λ _{em}	Conc.	λ_{em}	Conc.	λ_{em}	
	(M)	(nm)	(M)	(nm)	(M)	(nm)	(M)	(nm)	
	0.1	439	0.1	435	0.1	474	0.1	518	
	0.01	358,428	0.01	432	0.01	466	0.01	517	
	0.001	359,426	0.001	431	0.001	453	0.001	517	
L2a	0.0001	330,364	0.0001	391,429	0.0001	452	0.0001	518	
	0.1	464	0.1	440	0.1	466	0.1	500	
L2b	0.01	365,431	0.01	435	0.01	459	0.01	490	
	0.001	359,424	0.001	433	0.001	454	0.001	489	
	0.0001	330,364	0.0001	391,429	0.0001	453	0.0001	489	
λ_{ex}	320 nm		380 nm		420 nm		430 nm		
L3a	0.1	463	0.1	463	0.1	509	0.1	511	
	0.05	459	0.05	461	0.05	501	0.05	504	
	0.01	391,449	0.01	428,458	0.01	500	0.01	497	
	0.001	353,386	0.001	428,460	0.001	479	0.0001	493	
λ_{ex}	320 nm		350 nm		400 nm		450 nm		
	0.1	382,470	0.1	469	0.1	477	0.1	508	
L3b	0.01	384	0.05	466	0.05	475	0.05	504	
	0.001	356,378	0.01	392,463	0.01	473	0.01	503	
			0.001	391,454	0.0001	453			
			0.0001	390,430					

Table S1: λ_{max} in the PL Spectra in solutions of different concentration and at different excitations

λ_{ex}	280 nm		320 nm		380 nm		450 nm		
	0.1	514	0.1	394	0.1	464	0.1	519	
	0.05	406	0.05	386	0.05	462	0.05	518	
L4a	0.01	383	0.01	383	0.01	460	0.01	517	
	0.001	304,373	0.001	380	0.001	460	0.001	517	
	0.0001	306,370					0.0001	517	
λ_{ex}	320 nm		380 nm		400 nm		420 nm		
	Conc.	λ_{em}	Conc.	λ _{em}	Conc.	λ_{em}	Conc.	λ_{em}	
	(M)	(nm)	(M)	(nm)	(M)	(nm)	(M)	(nm)	
L4b	0.1	465	0.1	469	0.1	481	0.1	493	
	0.01	356,430	0.05	468	0.05	479	0.05	493	
	0.001	353,420	0.01	464	0.01	474	0.01	490	
			0.001	429,461	0.001	453	0.001	480	
			0.0001	428	0.0001	453	0.0001	484	

Compounds		Molar Extinction coefficient (ϵ) (M ⁻¹ cm ⁻¹)	Wavelength in nm
L2b	10 ⁻⁴ M	521 607 2796	349 330 284
	10 ⁻⁵ M	930 23170 45310	330 241 202
	10 ⁻³ M	126.7	299
L3a	10 ⁻⁴ M	259 375 1760 1338	345 300 269 277
	10 ⁻⁵ M	-136570 10250 12600	345 223 201
L3b	10 ⁻⁴ M	693 2255	349 275
	10 ⁻⁵ M	1620 20370 48380	349 238 202
L4a	10 ⁻⁴ M	493 1361 1842	347 277 269
	10 ⁻⁵ M	540 16720 26650	349 223 201
L4b	10 ⁻⁴ M	774 2365	348 278
	10 ⁻⁵ M	1710 29620 64060	348 237 202

Table S2: Molar Extinction Coefficient of UV-Vis spectra of L2b, L3a, L3b, L4a and L4b inwavelengths near 300nm

Figure S46: TCSPC decay profiles of L2a in different concentration in MeOH with excitation at 375 nm

Figure S49: TCSPC decay profiles of L3b in different concentration in MeOH with excitation at 375 nm

Figure S50: TCSPC decay profiles of L4a in different concentration in MeOH with excitation at 375 nm

Figure S51: TCSPC decay profiles of L4b in different concentration in MeOH with excitation at 375

Excitation Wavelength = 375nm	τ_1 (ns)	τ ₂ (ns)	τ ₃ (ns)	$ au_{avg}$ (ns)
L2a				
$\overline{10^{-1}}$ M; $\lambda_{\text{Emission}}$ 520nm	$1.55 (\alpha_1 0.30)$	$5.66 (\alpha_2 0.10)$	$0.23 (\alpha_3 0.60)$	$1.15(\chi^2 1.24)$
10^{-1} M; $\lambda_{\text{Emission}} 446$ nm	$1.22 (\alpha_1 0.30)$	$0.15(\alpha_2 0.62)$	$4.19(\alpha_3 0.08)$	$0.803(\chi^2 1.27)$
10⁻²M ; $\lambda_{\text{Emission}}$ 520nm	$1.65 (\alpha_1 0.28)$	$5.69(\alpha_2 0.11)$	$0.19(\alpha_3 0.61)$	$1.19(\chi^2 1.27)$
10⁻⁴M ; $\lambda_{\text{Emission}}$ 520nm	$1.74 (\alpha_1 0.27)$	$5.93(\alpha_2 0.10)$	$0.23 (\alpha_3 0.63)$	$1.21 (\chi^2 1.22)$
10 ⁻⁴ M ; $\lambda_{\text{Emission}}$ 449nm	$1.23 (\alpha_1 \ 0.35)$	$0.26(\alpha_2 \ 0.54)$	4.69 (a ₃ 0.11)	$1.076 (\chi^2 \ 1.05)$
L2b				
10⁻¹M ; $\lambda_{\text{Emission}}$ 457nm	$1.48 (\alpha_1 0.38)$	$4.17 (\alpha_2 0.13)$	$0.23 (\alpha_3 0.49)$	$1.209(\gamma^2 1.15)$
10^{-2} M; $\lambda_{\text{Emission}}454$ nm	$2.06(\alpha_1 0.36)$	$5.72(\alpha_2 0.11)$	$0.29(\alpha_{3} 0.53)$	$1.540(\chi^2 1.17)$
10-4 M; $\lambda_{\text{Emission}}$ 518nm	$1.45(\alpha_1 0.23)$	$5.53(\alpha_2 0.12)$	$0.13(\alpha_3 0.64)$	$1.110(\chi^2 1.11)$
10⁻⁴ M ; λ Emission 457nm	$1.51(\alpha_1 0.37)$	$5.92(\alpha_2 0.08)$	$0.21(\alpha_3 0.55)$	$1.172(\chi^2 1.15)$
10⁻⁶ M ; λ Emission 518nm	$0.57 (\alpha_1 \ 0.88)$	$4.29(\alpha_2 0.12)$		$1.001 (\chi^2 1.42)$
10 ⁻⁶ M; $\lambda_{\text{Emission}}$ 457nm	$0.79(\alpha_1 0.97)$	$4.56(\alpha_2 0.03)$		$0.90(\chi^2 1.40)$
10-6 M; $\lambda_{\text{Emission}}$ 457nm	$0.33(\alpha_1 \ 0.38)$	$0.95(\alpha_2 \ 0.61)$	5.87 (a ₃ 0.01)	$0.79(\chi^2 1.15)$
L3a				
$\overline{10^{-1}}$ M; $\lambda_{\text{Emission}}$ 500nm	$1.38 (\alpha_1 0.22)$	$5.43 (\alpha_2 0.11)$	$0.17 (\alpha_3 0.68)$	$1.00 (\chi^2 1.23)$
10^{-1} M; $\lambda_{\text{Emission}}$ 463nm	$1.19(\alpha_1 0.21)$	$5.01(\alpha_2 0.10)$	$0.15(\alpha_3 0.69)$	$0.845(\chi^2 1.17)$
10^{-2} M; $\lambda_{\text{Emission}}$ 500nm	$1.406 (\alpha_1 0.23)$	$5.39(\alpha_2 0.11)$	$0.17(\alpha_3 0.66)$	$1.034 (\chi^2 1.111)$
10⁻²M ; $\lambda _{\text{Emission}}$ 463nm	$0.99(\alpha_1 0.19)$	$4.53 (\alpha_2 \ 0.09)$	$0.12(\alpha_3 0.72)$	$0.682(\chi^2 1.11)$
10 ⁻⁴ M; $\lambda_{\text{Emission}}$ 500nm	$1.28 (\alpha_1 \ 0.28)$	$5.34(\alpha_2 \ 0.10)$	$0.15(\alpha_3 0.62)$	$1.001 (\chi^2 1.08)$
L3b				
10⁻¹M ; $\lambda_{\text{Emission}}$ 477nm	$2.50 (\alpha_1 0.19)$	7.43 (α_2 0.24)	$0.24 (\alpha_3 0.57)$	2.416 (χ^2 1.14)
10⁻⁵M ; $\lambda_{\text{Emission}}$ 473nm	$6.24 (\alpha_1 \ 0.93)$	$4.83 (\alpha_2 \ 0.07)$		$0.903 (\chi^2 1.34)$
L.4a				
10^{-1} M [·] λ_{1} minimized 464nm	$1.93 (\alpha, 0.17)$	$6.90(\alpha_2 0.11)$	$0.15 (\alpha_2 0.72)$	$1.201 (\gamma^2 1.20)$
10^{-4} M; $\lambda_{\text{Emission}}$ 460nm	$0.86 (\alpha_1 0.43)$	$5.29 (\alpha_2 0.11)$	$0.19 (\alpha_3 \ 0.46)$	$1.021 (\chi^2 1.21)$
L4b				
10^{-1} M· $\lambda_{\text{Emission}}$ 540nm	$1.42 (\alpha_1 0.11)$	$5.52(\alpha_2 0.37)$	$0.19(\alpha_2 0.52)$	$2.29(x^2 + 1.17)$
10^{-1} M· λ Emission 469nm	$1.57 (\alpha_1 0.14)$	$5.32(\alpha_2 0.37)$	$0.19 (\alpha, 0.52)$ 0.19 ($\alpha, 0.66$)	$1.495(\chi^{2}1.18)$
10^{-1} M· λ Emission 530nm	$1.60 (\alpha_1 0.11)$	$5.55 (\alpha_2 0.36)$	$0.18 (\alpha_2 0.50)$	$2.25(\gamma^2 1.14)$
10^{-2} M: λ Emission 5.30nm	$1.56 (\alpha_1 0.09)$	$6.02 (\alpha_2 0.36)$	$0.17 (\alpha_2 \ 0.55)$	$2.39(\gamma^2 1.15)$
10^{-2} M: λ Emission 5.30nm	$0.32 (\alpha_1 0.53)$	$5.8 (\alpha_2 0.47)$		$2.90(\chi^2 1.33)$
10^{-4} M: λ Emission 530nm	$2.38(\alpha_1 0.13)$	$6.25 (\alpha_2 0.42)$	$0.19 (\alpha_3 0.45)$	$3.01 (\gamma^2 1.05)$
10^{-4} M; $\lambda_{\text{Emission}}$ 530nm	$0.432 (\alpha_1 0.41)$	$5.84 (\alpha_2 0.59)$		$3.61(\gamma^2 1.33)$
10^{-4} M; $\lambda_{\text{Emission}}$ 507nm	$0.49 (\alpha_1 0.41)$	$5.94 (\alpha_2 0.59)$		$3.692(\gamma^2 1.29)$
		(2)		

Table S3: Fluorescence lifetime data for L2a, L2b, L3a, L3b, L4a and 4b

Figure S52: ¹H NMR spectra of L2b in CDCl₃ by changing the concentration of compound

