Supplementary Information

Morphology Fixing Agent for PC₆₀BM in Planar-Type Perovskite Solar Cells for Enhanced Stability

Sunyong Ahn ^{a,+}, Woongsik Jang ^{a,+}, Jong Hyeok Park ^{b, *} and Dong Hwan Wang _{a,*}

^aSchool of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjakgu, Seoul 156-756, Republic of Korea
^bDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 120-749, Republic of Korea

* Corresponding author, E-mail address: lutts@yonsei@.ac.kr, and king0401@cau.ac.kr (Prof. D.H. Wang)

⁺S. Ahn and W. Jang contribute equally in this work.

Figure S1. SEM cross sectional image of the PEDOT:PSS and the MAPbI $_3$ layer.

Figure S3. J-V characterization of the PSCs depending on the different thicknesses of MAPbI₃. The $PC_{60}BM$ layer was initially coated to a thickness of ~ 70 nm for thickness optimizing of MAPbI₃.

Figure S4. J-V curves of the PSCs with different thicknesses of TiO_x layer (0 to 20 nm).

Figure S5. J-V curves of the PSCs measured by forward and reverse scans, fabricated by (a) without and (b) with the TiO_x layer.

Figure S6. Photographs of the devices without and with the TiO_x morphological fixing agent and after the stability test: (a, b) PSCs without TiO_x , and (c, d) PSCs with TiO_x ; (a, c) as cast and (b, d) after 3 days.

Figure S7. SEM surface images of (a, b) MAPbI₃, (c, d) MAPbI₃/PC₆₀BM, (e, f) MAPbI₃/PC₆₀BM/TiO_x; (b, d, f) are the SEM images after 3 days.

PC ₆₀ BM (70nm)	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
MAPbI ₃ (190nm)	0.844	13.18	70.2	7.81
MAPbI ₃ (250nm)	0.793	11.10	58.4	5.14
MAPbI ₃ (290nm)	0.854	12.53	46.2	4.95

Table S1. Electrical parameters of the PSCs depending on the controlled thickness of MAPbI₃ as shown in Fig. S3.

PC ₆₀ BM (100nm)	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF (%)	Eff. (%)
without TiOx	0.875	12.58	72.8	8.01
With TiOx (~5nm)	0.917	13.01	72.8	8.68
With TiOx (~10nm)	0.928	14.78	75.9	10.41
With TiOx (~20nm)	0.913	13.41	74.9	9.17

Table S2. Electrical parameters of the PSCs depending on different thickness of TiO_x layer as corresponded with Fig. S4.

PSCs	Scan direction	V _{OC} (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
Without	Forward	0.872	13.27	67.5	7.81
	Reverse	0.875	13.53	70.7	8.37
With TiO_x	Forward	0.928	14.78	75.9	10.41
	Reverse	0.928	14.89	76.7	10.59

Table S3. Electrical parameters of the PSCs without and with the TiO_x layer depending on the different scan directions as shown in Fig. S5.