Super/Hyperhalogen Aromatic Heterocyclic Compounds

Gorre Naaresh Reddy^a and Santanab Giri^{a*}

^a Department of Chemistry, National Institute of Technology, Rourkela, 769008, India

Corresponding Author: giris@nitrkl.ac.in

 $[C_2H_2N_2O]$

[C4H4N2]

[C5H5N]

[C4H4N2]

[C₃H₃NS]

[C₃H₃NO]

[C₃H₃NO]

[C3H4N2]

[C4H4S]

Figure S-I : Optimized geometries of neutral aromatic heterocyclic molecules

 $[C_2H_2N_2O]^-$

 $[C_4H_4N_2]^-$

[C5H5N]⁻

[C4H4N2]⁻

[C₃H₃NS]⁻

[C₃H₃NO]⁻

[C₄H₄S]⁻

[C3H3NO]⁻

[C₃H₄N₂]⁻

[C3H4N2]⁻

[C4H5N]⁻

Figure S-III : Optimized geometries of B substituted neutral aromatic heterocyclic molecules

Figure S-IV : Optimized geometries of B substituted anionic aromatic heterocyclic molecules

Figure S-V : Optimized geometries of F substituted aromatic heterocyclic neutral molecules

Figure S-VI : Optimized geometries of F substituted aromatic heterocyclic anion molecules

Figure S-VII : Optimized geometries of CN substituted aromatic heterocyclic neutral molecules

Figure S-VIII : Optimized geometries of CN substituted aromatic heterocyclic anion molecules