Supplementary information

Utilizing non-stoichiometry in Nd₂Zr₂O₇ pyrochlore: Exploring superior ionic conductors

P. Anithakumari¹, V. Grover^{1*}, C. Nandi², K. Bhattacharyya¹ and A. K. Tyagi¹

¹Chemistry Division, Bhabha Atomic Research Centre, Mumbai- 400085, India

²Radio Metallurgy Division, Bhabha Atomic Research Centre, Mumbai- 400085, India

Fig. 1 The Nd 4p XPS spectra recorded for the nominal compositions $Nd_{1.6}Zr_{2.4}O_{7.2}$ and $Nd_{1.8}Zr_{2.2}O_{7.1}$

Table 1: The data obtained after deconvolution of Nd $4p_{3/2}$ peak for the two nominal compositions $Nd_{1.6}Zr_{2.4}O_{7.2}$ and $Nd_{1.8}Zr_{2.2}O_{7.1}$

Peak	223.06	225.78	229.21	
FWHM	2.67	4.39	4.29	Nd _{1.6} Zr _{2.4} O _{7.2}
Area	17002	198150	161043	
Area(%)	4.52	52.66	42.83	
Peak	222.61	225.91	229.66	
FWHM	2.02	4.79	4.11	Nd _{1.8} Zr _{2.2} O _{7.2}
Area	34998	239551	89161	
Area(%)	9.62	65.86	24.53	

Fig. 2. The Zr 3p XPS spectra recorded for the nominal compositions $Nd_{1.6}Zr_{2.4}O_{7.2}$ and $Nd_{1.8}Zr_{2.2}O_{7.1}$

Table 2: The data obtained after deconvolution of Zr 3p_{3/2} peak for the two nominal compositions Nd_{1.6}Zr_{2.4}O_{7.2} and Nd_{1.8}Zr_{2.2}O_{7.1}

Peak	331.56	334.48	Nd _{1.6} Zr _{2.4} O _{7.2}
FWHM	3.44	2.64	
Area	649812	37448	
Area(%)	94.55	5.45	
Peak	331.85	335.25	Nd _{1.8} Zr _{2.2} O _{7.2}
FWHM	3.45	2.87	
Area	439713	340645	
Area(%)	92.81	7.19	

Fig. 1 represents XPS spectrum of the Nd $4p_{1/2}$ and $4p_{3/2}$ and the inset shows the respective deconvoluted spectrum of the Nd 4p_{3/2} peak for the two nominal compositions Nd_{1.6}Zr_{2.4}O_{7.2} and Nd_{1.8}Zr_{2.2}O_{7.1}. Three peaks at 223.1, 225.8 and 229.2 eV could be obtained upon deconvolution of Nd $4p_{3/2}$ peaks. The quantitative data associated with these peaks determined using the CASA software is also presented in the **Table 1**. These being Nd³⁺-deficient compositions, three types of environments for Nd³⁺ are expected. Vacant A (Nd³⁺) -sites, normal Nd³⁺ pyrochlore sites and Nd³⁺ in vicinity of Zr⁴⁺. Due to higher electron density at Nd³⁺ in vicinity of vacancy, the least binding energy would represent the Nd³⁺- vacancy states. The other two would be Nd³⁺ in A-site in pyrochlore lattice and the other where in the lattice sites Nd³⁺ are replaced by the Zr⁴⁺. The Nd³⁺ ions in the vicinity of Zr⁴⁺ will experience lesser electron density and hence should possess higher binding energy. Thus, the component at 229.2 eV represents Nd³⁺ in Zr⁴⁺ vicinity and the component at 225.8 eV should correspond to the Nd in the usual A-site in pyrochlores. The great prevalence of disorder would imply greater fraction of the component at 229.2 eV. It is obvious from Fig. 1 that the nominal composition Nd_{1.6}Zr_{2.4}O_{7.2} possess greater fraction of Nd³⁺ in vicinity of Zr⁴⁺ in similar environment implying it has higher disorder. Further, if the extent of order has to increase from $Nd_{1.6}Zr_{2.4}O_{7.2}$ to $Nd_{1.8}Zr_{2.2}O_{7.1}$, there should be an increase in average co-ordination number of Nd³⁺ which should manifest in lower average binding energy. As is obvious from the figure that average binding energy decreases on proceeding from the nominal composition $Nd_{1.6}Zr_{2.4}O_{7.2}$ to $Nd_{1.8}Zr_{2.2}O_{7.1}$ thus supporting greater order in latter.

Similarly, **Fig. 2** depicts Zr -3p XPS peaks and the inset shows the deconvoluted $3-p_{3/2}$ peak for the two nominal compositions. The respective data obtained after deconvolution and fitting are shown **Table 2**. We must state that not much is evident from the XPS data on Zr except that a slight increase in average B.E. indicates towards decrease in average co-ordination number of Zr on proceeding from Nd_{1.6}Zr_{2.4}O_{7.2} to Nd_{1.8}Zr_{2.2}O_{7.1}. This is in accordance in increase in order of system. An increase in order would try to increase the amount of Zr in 6-fold co-ordination.