Supporting Information

Composition-Dependent Structural and Electrical Properties of P-type SnO_x Thin Films Prepared by Reactive DC Magnetron Sputtering: Effects of Oxygen Pressure and Heat Treatment

Sang Jin Han¹, Sungmin Kim¹, Joon-Gyu Ahn³, Jae Kyeong Jeong^{2*}, Hoichang Yang^{3#}, and Hyeong Joon Kim¹⁸

¹Department of Materials Science and Engineering, and Inter-University Semiconductor

Research Center, Seoul National University, Seoul 151-742, Republic of Korea

²Department of Electronic Engineering, Hanyang University, Seoul 133-791, Republic of

Korea

³Department of Applied Organic Materials Engineering, Inha University, Incheon 402-751, Republic of Korea

AUTHOR EMAIL ADDRESSES: *J. K. J. (jkjeong1@hanyang.ac.kr); #H. Y. (hcyang@inha.ac.kr); ^{\$}H. J. K. (thinfilm@snu.ac.kr)

P _O (%) -	As deposited (at.%)				After heat treatment (at.%)			
	Sn ⁰	Sn ²⁺	Sn ⁴⁺	O/Sn+O	Sn ⁰	Sn ²⁺	Sn ⁴⁺	O/Sn+O
4	52.2	45.0	2.8	24.3	23.2	74.0	2.7	36.3
6	43.9	52.9	3.2	28.2	21.8	74.4	3.7	36.1
8	40.4	56.0	3.6	29.3	21.1	74.4	4.4	36.3
10	23.5	71.5	5.0	35.4	17.7	75.8	6.6	37.8
12	3.3	84.7	12.1	43.5	2.8	85.2	12.1	44.0

Table S1. Chemical compositions of Sn (Sn⁰, Sn²⁺, and Sn⁴⁺) and O content in SnO_x films fabricated under various P_O conditions, before and after heat treatment at 210 °C for 1 h.

Figure S1. (a) 2D GIXD patterns of as-deposited SnO_x films fabricated at $P_0 = 4$, 6, 8, and 10 %. (b–e) 1D in-plane and out-of-plane X-ray profiles extracted from the patterns shown in (a): (b) 4, (c) 6, (d) 8, and (e) 10 % P₀ samples.

Figure S2. SEM images of as-deposited SnO_x thin films (15-nm-thick) fabricated under various P_0 : (a) 4, (b) 6, (c) 8, and (d) 10 %.

Figure S3. Energy dispersive X-ray spectroscopy (EDS) analysis of atomic composition in the SnO_x thin films (15-nm-thick) deposited on a Si substrate under P_0 of 8 % and heat-treated at 210 °C for 1 h: (a) at the irregular protrusion and (b) outside of the irregular protrusion.

Figure S4. TFT performance metrics extracted from transfer characteristics of bottom gate TFTs prepared using SnO_x thin films (15-nm-thick) deposited under P_O of 4–8 % and heat-treated at T_A of 150–300 °C: (a) $I_{ON/OFF}$ ratio and (b) field effect mobility (μ_{FE}).

Figure S5. SEM micrographs of 45-nm-thick SnO_x films fabricated under P_O of (a) 4% and (b) 8%, and both subsequently annealed at 210 °C for 1 h.