Supporting Information

Superior electrocatalytic activity of ultrathin PtPdBi nanowires towards ethanol electrooxidation

Xiao-Ting Zhang,^a Lin-Nan Zhou,^a Yan-Yan Shen,^a Hong-Tao Liu^{*b} and Yong-Jun Li^{*a} ^aState Key Lab of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. E-mail: <u>liyje@hnu.edu.cn</u>

^bCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410082, China. E-mail: liuht@csu.edu.cn

Synthesis of PtPdBi tri-metallic nanowires [1]. Typically, PVP (55 mg) was dissolved into 9.4 mL of EG in a flask (solution1); a specified amount of Na₂PtCl₄·3H₂O, Bi(NO₃)₃·5H₂O(3.6 mg) and EG (1.0 mL) were dissolved into a specified amount $0.01 \text{ mol}\cdot\text{L}^{-1}$ H₂PdCl₄ aqueous solution (solution 2). Solution 1 was heated to 170 °C under a flow of argon gas and then solution 2 was rapidly injected. The reaction solution was kept at 170 °C under magnetic stirring for 15 min and then cooled to room temperature. The atomic ratios of Pt to Pd in tri-metallic composites can be tuned by changing the feeding molar ratio of Na₂PtCl₄·3H₂O to H₂PdCl₄ when other conditions were kept unchanged. When 21.3 mg of Na₂PtCl₄·3H₂O and 2.441 mL of 0.01 mol·L⁻¹ H₂PdCl₄ was used, the as-prepared samplewas referred to as Pt₅₅Pd₃₈Bi₇; 16.0 mg of Na₂PtCl₄·3H₂O and 3.662 mL of 0.01 mol·L⁻¹ H₂PdCl₄ constituted Pt₄₁Pd₅₂Bi₇. According to the approach above, Pt₇₀Pd₂₃Bi₇ nanowires were also prepared when 24 mg of Na₂PtCl₄·3H₂O, 3.6 mg of Bi(NO₃)₃·5H₂O and 1.88 mL of 0.01 mol·L⁻¹ H₂PdCl₄ were used.

Synthesis of $Pd_{92}Bi_8$ nanowires [1]. 27.5 mg of PVP was dissolved into 9.4 mL of ethylene glycol and heated to 170 °C under a flow of argon gas. Subsequently, the mixture of 3.662 mL of 0.01 mol·L⁻¹ H₂PdCl₄ aqueous solution and 1.8 mg of Bi(NO₃)₃·5H₂O was injected rapidly. The reaction solution was kept at 170 °C under magnetic stirring for 30 min before being cooled to room temperature.

Synthesis of $Pt_{50}Pd_{50}$ nanoparticles [1]. Ethylene glycol (9.4 mL) and PVP (55 mg) were mixed in a flask (solution 1); Na₂PtCl₄·3H₂O (16.0 mg), ethylene glycol (1.0 mL) were dissolved into 3.662 mL of 0.01 mol·L⁻¹ H₂PdCl₄ aqueous solution (solution 2). Solution 1 was heated to 170 °C under a flow of argon gas and then solution 2 was rapidly injected. The reaction solution was kept at 170 °C under magnetic stirring for 15 min before being cooled to room temperature.

To remove EG and excess PVP, all resultant colloids were centrifuged at 3000 rpm for 15 min. The solid product was redispersed into acetone and centrifuged at 9000 rpm. After discarding the supernatant, the

product was washed twice with ethanol by centrifugation at 9000 rpm. The final product was dried naturally in air for characterization and use.

Samples	ECSA/ m ² .g ⁻¹
Pt70Pd23Bi7/C	54.6
Pt55Pd38Bi7/C	73.7
Pt41Pd52Bi7/C	50.5
Pt70Pd23Bi7/RGO	80.6
Pt55Pd38Bi7/RGO	136.6
Pt ₄₁ Pd ₅₂ Bi ₇ /RGO	57.1

Table S1 ECSAs of $Pt_xPd_{93-x}Bi_7/C$ or RGO estimated by integrating the adsorption-desorption peaks of hydrogen in Figure S2.

Figure S1 Cycle voltammograms of $Pt_{70}Pd_{23}Bi_7$, $Pt_{55}Pd_{38}Bi_7$ and $Pt_{41}Pd_{52}Bi_7$ catalysts supported on Vulcan XC72 carbon (A) and RGO (B) in 0.5 mol/L H₂SO₄ at a scan rate of 50 mV·s⁻¹.

Figure S2 TEM images of $Pt_{55}Pd_{38}Bi_7/C$ (A and B) and $Pt_{55}Pd_{38}Bi_7/RGO$ (C and D) with different magnifications.

References

[1] Y.-Y. Shen, Y. Sun, L.-N. Zhou, Y.-J. Li, E. S. Yeung, J. Mater. Chem. A, 2014, 2, 2977-2984