Supporting information

Magnetically separable CuFe₂O₄/reduced graphene oxide nanocomposites: As a highly active catalyst for solvent free oxidative coupling of amines to imines

Ritu Dhanda and Maazahir Kidwai*

Green chemistry research laboratory, Department of Chemistry, University of Delhi, North campus, New Delhi-110007, India

Fax: (91-11) 27666235, E-mail: kidwai.chemistry@gmail.com

Experimental

1. Catalytic oxidative coupling of benzylamines to imines under N_2 environment: To check the role of oxidant, we performed benzylamine oxidation reaction under N_2 environment. Typically 15 mg of catalyst and 1mmol of benzylamine were taken in a 10 mL round bottom flask. The reaction mixture was then heated at 60 °C for the required time under continuous N_2 flow and the progress of reaction was monitored by thin layer chromatography (TLC). After reaction, the liquid products and the catalyst were separated by centrifugation and the filtrate was passed through the basic alumina-packed column using a mixture of ethyl acetate and hexane (1:9) as eluent. The imine derivatives obtained by this procedure were characterized by ¹H NMR.

Figure S1. Powder XRD spectrum of (a) graphene oxide, (b) bare CuFe₂O₄ NPs (impurity peaks of CuO marked with blue dot) and (c) CuO/RGO nanocomposites.

Figure S2. SEM-EDS analysis of CFRNCs.

Figure S3. TGA curve of CuO/RGO NCs.

Figure S4. (a) Broad XPS spectrum and (b) C 1s core spectrum of CuFe₂O₄/RGO nanocomposites.

Figure S5. (a-c) Low resolution TEM images of $CuFe_2O_4/RGO$ NCs with 15, 45 and 60 wt % graphene content respectively.

Figure S6. (a-b) Low resolution TEM images of bare CuFe₂O₄ NPs.

N-benzylidene-1-phenylmethanamine

¹H NMR (400 MHz, CDCl₃): δ_H 8.34 (s, 1H), 7.71-7.70 (m, 2H), 7.4-7.25 (m, 8H), 4.76 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ_C 161.6, 139.4, 135.6, 130.4, 128.1, 127.9, 127.6, 126.7, 126.4, 64.5.

Figure S7. ¹H-NMR of N-benzylidene-1-phenylmethanamine.

Figure S8. ¹³C NMR of N-benzylidene-1-phenylmethanamine.

Figure S9. Mass spectra of N-benzylidene-1-phenylmethanamine.

Figure S10. 1 H-NMR of benzylamine oxidation reaction under N₂ environment.

N-(4-chlorobenzylidene)-1-(4-chloro phenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H} 8.33$ (s, 1H), 7.68 (d, 2H, J = 8.4 Hz), 7.37 (d, 2H, J = 8.3 Hz), 7.31-7.26 (m, 4H), 4.75 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 160.8, 137.5, 136.8, 134.3, 132.7, 129.4, 129.2, 128.9, 128.6, 64.1

Figure S11. ¹H-NMR of N-(4-chlorobenzylidene)-1-(4-chloro phenyl)methanamine.

Figure S12. ¹³C NMR of N-(4-chlorobenzylidene)-1-(4-chloro phenyl)methanamine.

N-(4-fluorobenzylidene)-1-(4-fluorophenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.32 (s, 1H), 7.82-7.70 (m, 2H), 7.45-7.36 (m, 2H), 7.25-7.15 (m, 4H), 4.74 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 165.52, 163.0, 162.8, 160.6, 160.5, 134.7 (d, $J_{C,F} = 2.9$ Hz), 132.1 (d, $J_{C,F} = 2.9$ Hz), 130.1 (d, $J_{C,F} = 8.6$ Hz), 129.4 (d, $J_{C,F} = 8.6$ Hz), 115.2 (d, $J_{C,F} = 21.1$ Hz), 115.0 (d, $J_{C,F} = 21.1$ Hz), 64.0

Figure S13. ¹H-NMR of N-(4-fluorobenzylidene)-1-(4-fluorophenyl)methanamine.

Figure S14. ¹³C NMR of N-(4-fluorobenzylidene)-1-(4-fluorophenyl)methanamine.

N-(2-methylbenzylidene)-1-(o-tolyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.67 (s, 1H), 7.93-7.91 (m, 1H), 7.30-7.17 (m, 7H), 4.83 (s, 2H), 2.50 (s, 3H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ_C 160.4, 137.5, 137.4, 135.9, 134.0, 130.6, 130.1, 129.9, 128.1, 127.5, 126.8, 126.0, 125.9, 63.1, 19.2, 19.1.

Figure S15. ¹H-NMR of N-(2-methylbenzylidene)-1-(o-tolyl)methanamine.

Figure S16. ¹³C NMR of N-(2-methylbenzylidene)-1-(o-tolyl)methanamine.

N-(4-(trifluoromethyl)benzylidene)-1-(4(trifluoromethyl)phenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 8.67 (s, 1H), 7.91 (d, 2H, J = 7.83 Hz), 7.38-7.26 (m, 4H), 7.18 (d, 2H, J = 7.83 Hz), 4.83 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 161.13, 142.9, 138.9, 132.7, 132.3, 128.4, 128.0, 125.6 (q, J_{C,F} = 3.8 Hz), 125.4(q, J_{C,F} = 3.8 Hz), 122.4, 64.3.

Figure S17. ¹H-NMR of N-(4-(trifluoromethyl)benzylidene)-1-(4(trifluoromethyl)phenyl)methanamine.

Figure S18. ¹³C NMR of N-(4-(trifluoromethyl)benzylidene)-1-(4(trifluoromethyl)phenyl)methanamine.

N-(4-methoxybenzylidene)-1-(4-methoxyphenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.29 (s, 1H), 7.71 (d, 2H, J = 8.6), 7.22 (d, 2H, J = 8.7), 6.88-6.86 (m, 4H), 4.72 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ_C 161.4, 160.7, 158.3, 131.4, 129.6, 129.0, 128.1, 113.78, 113.72, 64.2, 55.16, 55.10.

Figure S19. ¹H-NMR of N-(4-methoxybenzylidene)-1-(4-methoxybenyl)methanamine.

Figure S20. ¹³C NMR of N-(4-methoxybenzylidene)-1-(4-methoxybenyl)methanamine.

N-(4-methylbenzylidene)-1-(p-tolyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.36 (s, 1H), 7.70 (d, 2H, J = 8.2 Hz), 7.28-7.16 (m, 6H), 4.79 (s, 2H), 2.41 (s, 3H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ_C 161.9, 140.3, 136.6, 136.3, 133.5, 129.5, 129.1, 128.3, 128.1, 64.6, 21.4, 21.1.

Figure S21. ¹H NMR of N-(4-methylbenzylidene)-1-(p-tolyl)methanamine.

Figure S22. ¹³C NMR of N-(4-methylbenzylidene)-1-(p-tolyl)methanamine.

N-(3-methoxybenzylidene)-1-(3-methoxyphenyl)methanamine

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.3 (s, 1H), 7.31 – 7.22 (m, 1H), 6.94 – 6.89 (m, 3H), 6.86-6.76 (m, 4H), 4.78(s, 2H), 3.82 (s, 3H), 3.79(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ_C 162.1, 159.9, 159.8, 140.8, 137.6, 129.6, 129.5, 121.7, 120.3, 117.6, 113.7, 112.5, 111.6, 64.7, 55.4, 55.2.

Figure S23. ¹H-NMR of N-(3-methoxybenzylidene)-1-(3-methoxyphenyl)methanamine.

Figure S24. ¹³C NMR of N-(3-methoxybenzylidene)-1-(3-methoxybenyl)methanamine.

N-(2-chlorobenzylidene)-1-(2-chlorophenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.86 (s, 1H), 8.12-8.10 (m, 2H), 7.42-7.17 (m, 6H), 4.94 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 159.7, 136.7, 135.2, 133.3, 133.0, 131.6, 129.7, 129.6, 129.2, 128.3, 128.2, 127.0, 126.8, 62.1.

Figure S25. ¹H-NMR of N-(2-chlorobenzylidene)-1-(2-chlorophenyl)methanamine.

Figure S26. ¹³C NMR of N-(2-chlorobenzylidene)-1-(2-chlorophenyl)methanamine.

N-(3,4-dichlorobenzylidene)-1-(3,4-dichlorophenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** δ_H 8.29 (s, 1 H), 7.88 (d, J = 1.9 Hz, 1 H), 7.59-7.57 (dd, J = 8.3, 2 Hz), 7.50 (d, J = 8.4 Hz, 1 H), 7.39 (d, J = 8.2 Hz, 2H), 7.16-7.13 (dd, J = 8.2, 2 Hz, 1 H), 4.74 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 160.02, 139.03, 135.61, 135.09, 133.16, 132.99, 130.69, 130.43, 129.75, 127.34, 127.18, 63.51

Figure S27. ¹H-NMR of N-(3,4-dichlorobenzylidene)-1-(3,4-dichlorophenyl)methanamine.

Figure S28. ¹³C NMR of N-(3,4-dichlorobenzylidene)-1-(3,4-dichlorophenyl)methanamine.

N-(3-(trifluoromethyl)benzylidene)-1-(3-trifluoromethyl)phenyl)methanamine

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.46 (s, 1 H), 8.06 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.71-7.67 (m, 1H), 7.59-7.42 (m, 5H), 4.88 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ_C 160.9, 139.9, 136.5, 131.4 (q, J = 0.9 Hz), 131.2 (q, J = 1 Hz), 131.0 (q, J = 30.6 Hz), 130.9 (q, J = 30.4 Hz), 129.2, 129.1, 127.4 (q, J = 3.6 Hz), 125(q, J = 3.6 Hz), 124.6 (q, J = 3.6 Hz), 124.0 (q, J = 270 Hz), 123.7 (q, J = 3.6 Hz), 123.6 (q, J = 270 Hz), 64.4

Figure S29. ¹H-NMR of N-(3-(trifluoromethyl)benzylidene)-1-(3-trifluoromethyl)phenyl)methanamine.

Figure S30. ¹³C NMR of N-(3-(trifluoromethyl)benzylidene)-1-(3-trifluoromethyl)phenyl)methanamine.

N-(2-methoxybenzylidene)-1-(2-methoxyphenyl)methanamine

¹**H NMR (400 MHz, CDCl₃):** $\delta_{\rm H}$ 8.82 (s, 1H), 8.01 (dd, J = 7.6, 1.5 Hz, 1 H), 7.29-7.19 (m, 3 H), 6.98-6.85 (m, 4 H), 4.81 (s, 2H), 3.85(s, 3H), 3.83 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ_C 158.7, 158.3, 156.9, 131.7, 129.0, 128.0, 127.8, 127.4, 124.7, 120.6, 120.4, 110.9, 110.2, 59.5, 55.4, 55.2.

Figure S31. ¹H-NMR of N-(2-methoxybenzylidene)-1-(2-methoxyphenyl)methanamine.

Figure 32. ¹³C NMR of N-(2-methoxybenzylidene)-1-(2-ethoxyphenyl)methanamine.

Sr.	Catalyst	Time	Oxidant	Temp.	TOF (h ⁻	Ref.
No.		(h)		(°C)	¹)	
1	Au/CeO2	4	O ₂ (3 atm.)	130	2.4	S1
2	Au/Ce _{0.9} Fe _{0.1} O _{2-δ}	4	Bubbling	130	3.2	S1
3	Au/SBA-NH2	24	O ₂ (1 atm.)	100	4.9	S2
4	Au-Pd/Fiber	24	O ₂ (5 atm.)	100	3.7	S3
5	Meso Cs/MnO _x	3	Balloon	110	1.1	S4
7	CuFe ₂ O ₄ /RGO	8	Air	60	2.72	This
						work

Table S1. Comparison of catalytic activity of $CuFe_2O_4/RGO$ NCs with some recent nanocatalysts.

References

- **S1.** P. Sudarsanam, R. Selvakannan, S. K. Soni, S. K. Bhargava, B. M. Reddy, *RSC Adv.* 2014, **4**, 43460–43469.
- S2. C. K. P. Neeli, S. Ganji, V. S. P. Ganjala, S. R. R. Kamaraju and D. R. Burri, *RSC Adv.* 2014, 4, 14128.
- S3. H. Guo, M. Kemell, A. Al-Hunaiti, S. Rautiainen, M. Leskelä and T. Repo, *Catal. Commun.* 2011, 12, 1260–1264.
- S4. S. Biswas, B. Dutta, K. Mullick, C.-Hao Kuo, A. S. Poyraz, and S. L. Suib. *ACS Catal.* 2015, 5, 4394–4403.