Supplementary information

A quantum chemical approach towards understanding stability and tautomerism of 2-imino-2*H*-pyran derivatives⁺

Maria A. Vodolazhenko, Nikolay Yu. Gorobets,* Oleg A. Zhikol, Sergey M. Desenko, Oleg V. Shishkin

Content

Table S1. Selected geometrical parameters of acyclic Ar1 and Alk1 conformers	3
Table S2. Selected geometrical parameters of acyclic Alk1a, Alk1b conformers in vacuum	4
Table S3. Selected geometrical parameters of the conformers of cyclic forms Ar2, Alk2 and pyridones Ar3, Alk3	5
Table S4. Structures and relative Gibbs energies (Δ G, kcal/mol) of the conformers of acyclic form Ar1	6
Table S5. Structures and relative Gibbs energies (Δ G, kcal/mol) of 1:1 complexes with acetone formed by hydroxyl group of acyclic form Ar1	6
Table S6. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by amide group of acyclic form Ar1	7
Table S7. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by hydroxyl and imino groups of acyclic form Ar1	8
Table S8. Structures and relative Gibbs energies (ΔG, kcal/mol) of 1:1 complexes with DMSO formed by amide group of acyclic form Ar1.	8
Table S9. Structures and relative Gibbs energies (ΔG, kcal/mol) of conformers of cyclic form Ar2.	9
Table S10.* Structures of the most stable conformer of cyclic form Ar2 and of 1:1 complexes with DMSO and acetone formed by hydroxyl, imino and amide	
groups of cyclic form Ar2.	9
Table S11. Structures of the most stable conformer of pyridone Ar3 and of 1:1 complexes with DMSO and acetone formed by NH- and amide groups of pyridor	ne
Ar3	9
Table S12. Structures and relative Gibbs energies (ΔG , kcal/mol) of acyclic form Alk1 conformers.	. 10
Table S13. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by hydroxyl group of acyclic form Alk1	. 10
Table S14. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by amide group of acyclic form Alk1	. 11
Table S15. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by hydroxyl group of acyclic form Alk1	. 12
Table S16. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by amide group of acyclic form Alk1	. 13
Table S17. Structures and relative Gibbs energies (ΔG, kcal/mol) of conformers of acyclic form Alk1a.*	. 13
Table S18. Structures and relative Gibbs energies (ΔG , kcal/mol) of conformers of acyclic form Alk1b.*	. 14
Table S19. Structures and relative Gibbs energies (ΔG , kcal/mol) of conformers of cyclic form Alk2	. 14
Table S20. Structures of the most stable conformer of cyclic form Alk2 and of 1:1 complexes with DMSO and acetone formed by imino and amide groups of	
cyclic form Alk2	. 14
Table S21. Structures of the most stable conformer of pyridone Alk3 and of 1:1 complex with DMSO and acetone formed by NH- and amide groups of pyridone	e
Alk3	. 15
Table S22. Relative stability of possible conformers of cyclic Ar2 and acyclic Ar1 forms in vacuum (ΔG , kcal/mol).	. 15
Table S23. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar	r1)
forms in vacuum (ΔG, kcal/mol).	. 16

	2
Table S24. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic	
(Ar1) forms in PCM/DMSO (ΔG, kcal/mol)	. 17
Table S25. Relative stability of possible conformers of cyclic (Alk2) and acyclic (Alk1, Alk1a, Alkb) forms in vacuum (ΔG , kcal/mol)	. 18
Table S26. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic	
(Alk1, Alk1a, Alk1b) forms in vacuum (ΔG, kcal/mol)	. 19
Table S27. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic	
(Alk1, Alk1a, Alk1b) forms in PCM/DMSO (ΔG, kcal/mol).	. 21
Table S28. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar	r1)
forms in vacuum (ΔG, kcal/mol).	. 23
Table S29. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar	r1)
forms in PCM/acetone (ΔG, kcal/mol).	. 24
Table S30. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic	
(Alk1) forms in vacuum (ΔG, kcal/mol).	. 25
Table S31. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic	
(Alk1) forms in PCM/acetone (ΔG, kcal/mol).	. 26
Table S32. Intra- and intermolecular bond lengths and estimation of the bond energies for the most stable conformers of cyclic structures Ar2, Alk2 and their 1:1	1
complexes with DMSO and acetone formed by imino and amide groups of substrate in vacuum, PCM/DMSO and PCM/acetone.	. 27
Table S33. Intra- and intermolecular bond lengths and estimation of the bond energies for the most stable conformers of cyclic structures Ar1, Alk1 and their 1:1	1
complexes with DMSO and acetone formed by imino and amide groups of substrate in vacuum, PCM/DMSO, and PCM/acetone	. 30

	Vacuum			PCM/DMSO			
Structure		torsion angle		torsion angle			
	1-2-3-4	3-4-5-6	5-6-7-8	1-2-3-4	3-4-5-6	5-6-7-8	
			~ 1 ⁵				
				CN			
			~ 0; 1H	2			
Ar1_1	-20.8	19.9	0.8		ND		
Ar1_2	-175.5	33.5	2.7	178.0	33.3	2.9	
Ar1_3		duplicates Ar1_1			ND		
Ar1_4		duplicates Ar1_1			ND		
Ar1_5	0.0	180.0	-0.0	4.9	-163.1	-0.8	
Ar1_6	-180.0	180.0	-0.0	-180.0	-180.0	0.1	
Ar1_7		duplicates Ar1_5		ND			
Ar1_8	179.0	-179.6	-150.7	ND			
Ar1_9	36.6	-26.5	4.3	38.3	-28.0	3.2	
			O II F	08 //			
				67 NH_2			
				CN 2			
			1H	-			
Alk1_1	125.3	41.3	6.0	6.1	44.6	2.7	
Alk1_2	-172.4	40.7	4.9	-179.4	38.0	3.5	
Alk1_3	-16.9	29.8	3.5		ND		
Alk1_4	-169.6	43.7	150.5		ND		
Alk1_5	4.6	-147.0	-0.3	5.6	-150.0	3.3	
Alk1_6	-174.9	-148.2	2.5	-176.2	-153.8	3.3	
Alk1_7	17.9	-24.1	165.8		ND		
Alk1_8	175.2	-43.0	153.0	ND			
Alk1_9	21.1	-21.1	6.2	20.7	-20.8	4.1	
Alk1_10	-175.8	-70.7	-124.5	-180.0	-66.3	-132.0	

Table S1. Selected geometrical parameters of acyclic **Ar1** and **Alk1** conformers

Structure	torsion	n angle	Structuro	torsion angle		
Structure	1-2-3-4	3-4-5-6	Structure	1-2-3-4	2-3-4-5	
		06 5 NH ₂ CN			$H_{H_{23}}^{O5}$ H_{33}^{O5} H_{23}^{O5}	
Alk1a_1	64.8	-0.0	Alk1b_1	-87.7	46.0	
Alk1a_2	-118.5	0.0	Alk1b_2	duplicates of Alk1b_1		
Alk1a_3	115.5	-0.2	Alk1b_3	97.0	106.4	
Alk1a_4	-126.8	-145.0	Alk1b_4	duplicates	of Alk1b_3	
Alk1a_5	-78.2	-131.4				

Table S2. Selected geometrical parameters of acyclic Alk1a, Alk1b conformers in vacuum

	vac	cuum	PCM/DMSO		
Structure	torsic	on angle	torsion	n angle	
	1-2-3-4	3-4-5-6	1-2-3-4	3-4-5-6	
		~ ~			
			3 5 NH ₂		
		~~0	[∕] [∧] N2 1H		
Ar2_1	180.0	-179.6	180.0	180.0	
Ar2_2	1.3	-152.1	N	ND	
Ar2_3	duplicate	es of Ar2_1	N	ND	
Ar2_4	-1.9	26.9	N	ND	
		o L			
			3 NH2 3 N 2		
Alk2_1	-180.0	179.7	-180.0	180.0	
Alk2_2	1.0	-150.9	ND		
Alk2_3	-180.0	179.7	ND		
Alk2_4	-1.4	17.2	N	ND	
			04 2		
			5 3 NH₂ 1 0		
	1-2	<u>н</u> 2- <i>3-4</i>	1-2	-3-4	
Ar3_1	18	80.0	18	0.0	
Ar3_2	duplica	tes Ar3_1	N	ND	
		0 	04 		
			² 3 NH ₂		
Alk3 1		<u> </u>	18	0.0	
Alk3 2	duplicat	es Alk3 1	N N	ND	

Table S3. Selected geometrical parameters of the conformers of cyclic forms Ar2, Alk2 and pyridones Ar3, Alk3

Madium	Structure							
Iviculuili		Ar1						
	Ar1_1	Ar1_2	Ar1_5	Ar1_6	Ar1_8	Ar1_9		
	the second	the second secon	4th	HY H	- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	the second		
Vacuum	2.18	2.62	0.80	0	5.01	1.21		
PCM/DMSO	ND	2.66	2.28	0	ND	3.95		

Table S4. Structures and relative Gibbs energies (ΔG , kcal/mol) of the conformers of acyclic form Ar1

Table S5. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by hydroxyl group of acyclic form Ar1

Madium	Structure								
Medium	Ar1								
	Ar1_1 (OH)	Ar1_2 (OH)	Ar1_5 (OH)	Ar1_6 (OH)	Ar1_8 (OH)	Ar1_9 (OH)			
	ND	the the	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	なて	ND	ND			
+acetone (OH), Vacuum	ND	2.4	1.37	0	ND	ND			
+acetone (OH), PCM/acetone	ND	ND	ND	0	ND	ND			

Table S6. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by amide group of acyclic form Ar1.

Madium	Structure							
Ivicului			Ar1 (Ol	Ar1 (OH)				
	Ar1_1 (OH)	Ar1_2 (OH)	Ar1_5 (OH)	Ar1_6 (OH)	Ar1_8 (OH)	Ar1_9 (OH)		
	ND	THE A	4XX	J.A.A	ND	ND		
+DMSO (OH)	ND	1.7	2.7	0	ND	ND		
+DMSO (OH), PCM/DMSO	ND	2.3	2.6	0	ND	ND		

Table S7. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by hydroxyl and imino groups of acyclic form **Ar1**.

Table S8. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by amide group of acyclic form **Ar1**.

Madium	Structure						
Medium			Ar1 (CON	(H ₂)			
	Ar1_1	Ar1_2	Ar1_5	Ar1_6	Ar1_8	Ar1_9	
		CONH ₂	CONH_2	CONH ₂		CONH ₂	
	ND	2.6	0.7		ND	4.4	
$+DMSO(CONH_2)$	ND	CONH ₂ +CN	CONH ₂ +CN	CONH ₂ +CN	ND	CONH ₂ +CN	
			the state	\$44 16			
		CONH ₂	CONH	CONH2		CONH2	
+DMSO (CONH ₂),	ND	3.2	2.2	0		7.3	
PCM/DMSO	ND	CONH ₂ +CN	CONH ₂ +CN	CONH ₂ +CN	ND	CONH ₂ +CN	
		3.6	3.8	1.5		8.3	

Table S9. Structures and relative Gibbs energies (ΔG , kcal/mol) of conformers of cyclic form Ar2.

		Ar2	
	Ar2_1	Ar2_2	Ar2_4
	THE REAL PROPERTY AND A DECEMBER OF A DECEMB		THT.
Vacuum	0	8.6	8.3

Table S10.* Structures of the most stable conformer of cyclic form **Ar2** and of 1:1 complexes with DMSO and acetone formed by hydroxyl, imino and amide groups of cyclic form **Ar2**.

	PCM/DMSO	+acetone (NH)	+acetone (NH) PCM/acetone	+acetone (CONH ₂)	+acetone (CONH ₂) PCM/acetone	+DMSO (NH)	+DMSO (NH) PCM/DMSO	+DMSO (CONH ₂)	+DMSO (CONH ₂) PCM/DMSO
Ar2_1		4	YY Y	×	t t	大	the the	\downarrow	A A

*Conformers Ar2_2 and Ar2_4 were not done in all mediums.

Table S11. Structures of the most stable conformer of pyridone Ar3 and of 1:1 complexes with DMSO and acetone formed by NH- and amide group)S
of pyridone Ar3.	

	Vacuum	PCMd	+acetone (NH)	+acetone (NH) PCM/acetone	+acetone (CONH ₂)	+acetone (CONH ₂) PCM/acetone	+DMSO (NH)	+DMSO (NH) PCM/DMSO	+DMSO (CONH ₂)	+DMSO (CONH ₂) PCM/DMSO
Ar3_1	\downarrow			$\sum_{i=1}^{i}$	\downarrow	4	17	44	X	A A

Madium					Sti	ructure				
Medium					1	Alk1				
	Alk1_1	Alk1_2	Alk1_3	Alk1_4	Alk1_5	Alk1_6	Alk1_7	Alk1_8	Alk1_9	Alk1_10
			y	X-X-	1 th		XA	the second	XX	14
Vacuum	5.2	7.3	5.4	10.9	7.2	8.9	7.6	12.1	0	17.1
PCM/DMSO	2.2	1.1	ND	ND	2.9	2.0	ND	ND	0	6.8

Table S12. Structures and relative Gibbs energies (ΔG , kcal/mol) of acyclic form **Alk1** conformers.

Table S13. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by hydroxyl group of acyclic form **Alk1**.

Madium					Struct	ure				
Ivicului		Alk1 (OH)								
	Alk1_1	Alk1_2	Alk1_3	Alk1_4	Alk1_5	Alk1_6	Alk1_7	Alk1_8	Alk1_9	Alk1_10
	ND	the state	ND	ND	the second secon	大大	ND	ND	ND	ND
+acetone (OH)	ND	0	ND	ND	1.1	2.0	ND	ND	ND	ND
+acetone (OH) PCM/acetone	ND	0	ND	ND	ND	ND	ND	ND	ND	ND

Medium					Struc	cture				
wiedium					Alk1 (C	CONH ₂)				
	Alk1_1	Alk1_2	Alk1_3	Alk1_4	Alk1_5	Alk1_6	Alk1_7	Alk1_8	Alk1_9	Alk1_10
+acetone (CONH ₂)	ND		ND	ND	$CONH_2$ F 8.5 $CONH_2$ -CN F F 8.8	$CONH_2$ C	ND	ND	$\begin{array}{c} \hline \mathbf{CONH}_2 \\ \hline \\ 0 \\ \hline \\ \hline \\ \mathbf{CONH}_2 \text{-} \mathbf{CN} \\ \hline \\ \hline \\ 0.7 \\ \hline \\ 0.7 \\ \end{array}$	ND
+acetone (CONH ₂), PCM/ acetone	ND	$\begin{array}{c} \text{CONH}_2\\ \hline \\ \hline \\ \hline \\ 1.0\\ \hline \\ \text{CONH}_2\text{-CN}\\ \hline \\ \hline \\ \hline \\ 0.6\\ \hline \end{array}$	ND	ND	$CONH_2$ 2.8 $CONH_2-CN$ 2.4	ND	ND	ND	ND CONH ₂ -CN $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ 0	ND

Table S14. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with acetone formed by amide group of acyclic form **Alk1**.

Madium					Stru	cture				
Medium					Alk1	(OH)				
	Alk1_1	Alk1_2	Alk1_3	Alk1_4	Alk1_5	Alk1_6	Alk1_7	Alk1_8	Alk1_9	Alk1_10
	ND	THAN A	ND	ND	大文	THA HA	ND	ND	ty k	ND
+DMSO (OH)	ND	0	ND	ND	3.4	3.2	ND	ND	5.6	ND
+DMSO (OH), PCM/DMSO	ND	0	ND	ND	3.7	0.3	ND	ND	ND	ND

Table S15. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by hydroxyl group of acyclic form **Alk1**.

Table S16. Structures and relative Gibbs energies (ΔG , kcal/mol) of 1:1 complexes with DMSO formed by amide group of acyclic form **Alk1**.

Table S17. Structures and relative Gibbs energies (ΔG, kcal/mol) of conformers of acyclic form Alk1a.*

*Structure and relative stability of 1:1 complexes of structure Alk1a with DMSO in vacuum, PCM/DMSO are shown in Tables 26, 27.

		Alk1b	
	Alk1b_1	Alk1b_2	Alk1b_3
	支入	THAT HA	the the
Vacuum	0.004	duplicates Alk1b_1	0

Table S18. Structures and relative Gibbs energies (ΔG , kcal/mol) of conformers of acyclic form **Alk1b**.*

*Structure and relative stability of 1:1 complexes of structure Alk1b with DMSO in vacuum and in PCM/DMSO are shown in Tables 26, 27.

Table S19. Structures and relative Gibbs energies (ΔG , kcal/mol) of conformers of cyclic form Alk2.

		Α	12	
	Alk2_1	Alk2_2	Alk2_3	Alk2_4
	t		the second secon	the second
Vacuum	0	7.2	duplicates Alk2_1	4.7

Table S20. Structures of the most stable conformer of cyclic form **Alk2** and of 1:1 complexes with DMSO and acetone formed by imino and amide groups of cyclic form **Alk2**.

	PCM/DMSO	+acetone (NH)	+acetone (NH) PCM/acetone	+acetone (CONH ₂)	+acetone (CONH ₂) PCM/acetone	+DMSO (NH)	+DMSO (NH) PCM/DMSO	+DMSO (CONH ₂)	+DMSO (CONH ₂) PCM/DMSO
Alk2_1		the		ζŲ	+**	The second	A-A	the	T'A

*Conformers Alk2_2, Alk2_3 and Alk2_4 were not done in all mediums.

Table S21. Structures of the most stable conformer of pyridone Alk3 and of 1:1 complex with DMSO and acetone formed by NH- and amide groups of pyridone Alk3.

	Vacuum	PCM/DMSO	+acetone (NH)	+acetone (NH) PCM/acetone	+acetone (CONH ₂)	+acetone (CONH ₂) PCM/acetone	+DMSO (NH)	+DMSO (NH) PCM/DMSO	+DMSO (CONH ₂)	+DMSO (CONH ₂) PCM/DMSO
Alk3_1	X,	the second secon	×,	T T		++ ++	X	t t	X	A A

Table S22. Relative stability of possible conformers of cyclic Ar2 and acyclic Ar1 forms in vacuum (ΔG , kcal/mol).

Ar2_1	Ar2_2	Ar2_4	Ar1_6	Ar1_5
0	8.6	8.3	11.3	12.1
Ar1_9	Ar1_1	Ar1_2	Ar1_8	
12.5	13.4	13.9	16.3	

Ar2_1 (CONH ₂)	Ar2_1 (NH)	Ar1_6 (OH)	Ar1_2 (OH)	Ar1_5 (OH)
0	3.3	6.2	7.9	8.9
Ar1_6 (CONH ₂)	Ar1_9 (CONH ₂)	$Ar1_5$ (CONH ₂)	Ar1_9 (CONH ₂ -CN)	$Ar1_6$ (CONH ₂ -CN)
10.4	10.7	11.1	11.5	12.0
$4r1_5$ (CONH ₂ -CN)	Ar1_2 (CONH ₂)	Ar1_2 (CONH ₂ -CN)		
12.2	12.9	14.3		

Table S23. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar1) forms in vacuum (ΔG , kcal/mol).

Table S24. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar1) forms in PCM/DMSO (ΔG , kcal/mol).

Alk2 1	Alk2 4		Alk2 2	
0	4 7	5.8	7 2	11.0
Alk1_3	Alk1_5	Alk1_2	Alk1_7	Alk1a_3
11.2	13.0	13.1	13.4	13.8
Alk1_6	Alk1a_2	Alk1b_1	Alk1b_2	Alk1_4
14.6	15.4	16.6	16.6	16.7
Alkla 4	Alkla 1	Alk1 8	Alk1b 3	Alk1 10
17.0	17.3	17.9	18.6	22.9
Alk1a_5				

Table S25. Relative stability of possible conformers of cyclic (Alk2) and acyclic (Alk1, Alk1a, Alkb) forms in vacuum (ΔG , kcal/mol).

Table S26. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic (Alk1, Alk1a, Alk1b) forms in vacuum (ΔG , kcal/mol).

$Alk2 1 (CONH_2)$	Alk2 3 (NH)	Alk1_9 (CONH ₂ -CN)	Alk1_9 (CONH ₂)
0	2.2	4.0	4.8
Alk1 2 (OH)	Alk1 6 (OH)	Alk1 5 (OH)	Alk1 9 (OH)
5.0	8.2	8.4	10.6
$\frac{1}{4}$	Alk1_2 (CONH ₂)	Alk1a_3 (NH-CONH ₂)	Alk1_5 (CONH ₂ -CN)
12.3	12.5	12.5	12.8
spart for	HALLY Y	THY X	¥4↓↓ ¥
Alk1a_3 (Ht-CN)	Alk1a_2 (Ht-COc)	Alk1_6 (CONH ₂)	Alk1a_3 (NH-CN)
13.4	14.0	14.3	14.4

Table S27. Relative stability of 1:1 complexes with DMSO formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic (Alk1, Alk1a, Alk1b) forms in PCM/DMSO (ΔG, kcal/mol).

Alk1_2 (CONH2)Alk2_3 (NH)Alk1_2 (OH)Alk1_6 (OH)Alk1_5 (OH)00.51.31.65.0 $+++++$ $+++++++$ $++++++++++++++++++++++++++++++++++++$	the t	titte t	A L	TX XX	the second
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alk2_1 (CONH ₂)	Alk2_3 (NH)	Alk1_2 (OH)	Alk1_6 (OH)	Alk1_5 (OH)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0.5	1.3	1.6	5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alk1_9 (CONH ₂)	Alk1_9 (CONH ₂ -CN)	Alk1_2 (CONH ₂)	Alk1_6 (CONH ₂)	$\frac{1}{4}$ Alk1_5 (CONH ₂)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.3	7.3	7.5	7.8	8.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alk1a_3 (NH-CONH ₂)	Alk1_6 (CONH ₂ -CN)	Alk1a_3 (CH-COc)	Alk1a_2 (CH-CONH ₂)	Alk1_2 (CONH ₂ -CN)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.3	8.6	9.5	9.5	9.5
Alk1a_3 (CH-CONH2)Alk1_5 (CONH2-CN)Alk1a_2 (Ht-CN-COc)Alk1a_3 (Ht-CN)Alk1a_2 (Ht-CN)96979898106	X	A A	HALL	HALLY H	××××
	Alk1a_3 (CH-CONH ₂)	$\frac{\text{Alk1_5}(\text{CONH}_2\text{-CN})}{9.7}$	Alk1a_2 (Ht-CN-COc)	Alk1a_3 (Ht-CN)	Alk1a_2 (Ht-CN)

				22
Alk1a_2 (Ht-COc)	Alk1a_3 (NH-CN)	Alk1a_2 (NH-CONH ₂)	Alk1a_2 (NH-CN)	Alk1b_1 (NH-CN)
10.6	10.7	11.7	12.1	12.4
the the	XX +		AAAA AA	XX++
AIKID_I (Ht_CN)	$\frac{\text{AIK1D}_1 (\text{Ht-CO+N}_C\text{ONH}_2)}{12.5}$	AIKID_I (Ht-COC)	AIKID_I (CH-COC)	$\frac{\text{AIKID}_I (\text{NH-CONH}_2)}{12.7}$
Alk1b_3 (NH-CONH ₂)	Alk1b_1 (CH-CN)	Alk1b_3 (Ht-CN)	Alk1b_3 (Ht-CONH ₂)	Alk1a_5 (CONH ₂)
14.7	14.8	16.5	16.6	16.7
Alk1b_3 (NH-CN)	Alk1a_5 (CO)	Alk1b_3 (CH-COc)		
17.1	17.2	17.3		

Table S28. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar1) forms in vacuum (ΔG , kcal/mol).

Table S29. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Ar2) and acyclic (Ar1) forms in PCM/acetone (Δ G, kcal/mol).

Alk2_1 (CONH₂) Alk2_1 (NH) Alk1_9 (CONH₂) Alk1_9 (CONH₂-CN) Alk1_2 (OH) 3.7 0.6 4.4 7.8 $\mathbf{0}$ Alk1_5 (OH) Alk1_6(OH) Alk1_5 (CONH₂) Alk1_2 (CONH₂) Alk1_5 (CONH₂-CN) 8.9 9.4 12.4 12.2 12.6 Alk1_6 (CONH₂-CN) Alk1_2 (CONH₂-CN) Alk1_6 (CONH₂) 13.2 14.2 14.6

Table S30. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic (Alk1) forms in vacuum (ΔG , kcal/mol).

Alk2_1 (NH) Alk2_3 (CONH₂) Alk1_2 (OH) Alk1_9 (CONH₂-CN) 3.6 0.4 6.9 0 Alk1_2 (CONH₂-CN) Alk1_2 (CONH₂) Alk1_5 (CONH₂-CN) Alk1_5 (CONH₂) 7.9 9.7 9.4 7.5

Table S31. Relative stability of 1:1 complexes with acetone formed by hydroxyl, imino and amide groups of possible conformers of cyclic (Alk2) and acyclic (Alk1) forms in PCM/acetone (Δ G, kcal/mol).

Madium	Pond	A	r2_1	Alk2	Alk2_1		
Wiedrum	Bolid	l, Å	E, kcal/mol	l, Å	E, kcal/mol		
		Ż			ζ		
Vacuum	N–H…N (intramol)	1.931	-6.8	1.955	-6.4		
PCM/DMSO	N–H…N (intramol)	1.914	-7.7	1.940	-7.2		
		TT -	TT T	t	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
+DMSO (NH)	N-HN(=C) (intramol) N-HO(=S) (intermol) C-HN(intermol) C-HN(intermol) All intermol	1.918 2.043 2.944 2.773	-7.2 -4.7 -0.7 -1.0 -13.6 -6.4	1.945 2.000 2.833 2.976	-6.6 -5.2 -0.9 -0.6 -13.3 -6.6		
		t	T de	The second	4		
+DMSO (NH) PCM/DMSO	N-HO(=S) (intermol) N-HN(=C) (intramol) All intermol	2.040 1.903	-4.6 -7.5 -12.0 -4.6	1.994 1.929	-5.0 -6.9 -11.9 -5.0		

Table S32. Intra- and intermolecular bond lengths and estimation of the bond energies for the most stable conformers of cyclic structures **Ar2**, **Alk2** and their 1:1 complexes with DMSO and acetone formed by imino and amide groups of substrate in vacuum, PCM/DMSO and PCM/acetone.

					28
		the second secon	T +	t	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+DMSO (CONH ₂) PCM/DMSO	N-HO(=S) (intermol) (C=)OH (intermol) (C=)OH (intermol) N-HN(=C) (intramol) All intermol	1.911 3.160 3.193 1.923	-5.9 -0.3 -0.3 -7.0 -13.6 -6.6	1.910 3.167 3.150 1.950	-5.9 -0.3 -0.3 -6.6 -13.1 -6.6
		t		t	イズ
+acetone (NH)	N–H…N (intramol) N–H…O (intermol) C–H…N (intermol) All intermol	1.916 2.152 2.782	-7.2 -3.7 -0.9 -11.7 -4.6	1.943 2.109 2.873	-6.6 -4.0 -0.8 -11.3 -4.7
+acetone (NH) PCM/acetone	N-HO(=C) (intermol) N-HN(=C) (intramol) All intermol	2.139 1.903	-3.7 -7.4 -11.1 -3.7	2.105 1.930	-4.0 -6.9 -10.9 -4.0

					29
		\downarrow	ζ	XXX	Y t
+acetone (CONH ₂)	N-HO(=C) (intermol) (C=)OH (intermol) N-HN(=C) (intramol) All intermol	1.982 2.342 1.944	-5.0 -2.6 -6.6 -14.2 -7.6	1.978 2.338 1.970	-5.0 -2.6 -6.2 -13.8 -7.6
+acetone (CONH ₂) PCM/acetone	(C=)OH (intermol) N–HO(=C) (intermol) N–HN(=C) (intramol) All intermol	3.040 2.009 1.923	-0.5 -4.7 -7.0 -12.2 -5.2	3.058 2.003 1.949	-0.5 -4.8 -6.6 -11.9 -5.3

Medium	Bond		Ar1	Bond	1 8	Alk1
			Ar1_6		l, A	Alk1_2
Vacuum	PhHC(≡N)	2.378	-2.5	<u>H</u> –O…C(≡N)	2.799	-2.5
				C-HO(=C) O(-H) O(=CNH ₂) All	2.106 1.418	-6.5 -38.7 -45.2
		4	4r1_6		t	Alk1_2
PCM/DMSO	H–O…H(–C) PhH…C(≡N) All	2.289 2.401	-4.3 -2.5 -6.8	H–O…C(≡N) All	2.795	-2.7
PCM/DMSO					X	Alk1_9
				C–HO(=C) O(–H) O(=CNH ₂) All	2.127 1.406	-6.2 -40.8 - 47.0

Table S33. Intra- and intermolecular bond lengths and estimation of the bond energies for the most stable conformers of cyclic structures **Ar1**, **Alk1** and their 1:1 complexes with DMSO and acetone formed by imino and amide groups of substrate in vacuum, PCM/DMSO, and PCM/acetone.

						31
+DMSO		-} A				1_2 (ОН)
(OH)	PhH…C(≡N)	2.404	-2.3	OC(≡N)	2.725	-3.0
	PhOHC (intramol)	2.287	-4.2	O-HO(=S) (intermol)	1.563	-19.2
	O-HO(=S)	1.644	-14.3	CHO	2.607	-1.3
	C–H…OPh	2.722	-1.1	CHO	2.441	-1.9
	C–H…OPh	2.723	-1.1			
	All		-22.9	All		-25.4
	intermol		-16.4	intermol		-22.4
+DMSO (OH), PCM/DMSO		Ц Ал	с <u>1_6 (ОН)</u>		Alk	1_2 (OH)
	(S=)OHPh	2.648	-1.4	$(C\equiv)NH(CH_2S)$	2.766	-0.9
	O-HO(=S)	1.606	-16.1	O–H…O(=S) (intermol)	1.505	-24.4
	H–O…HC (intramol)	2.289	-4.1	H-OC(\equiv N) (intramol)	2.774	-2.7
	(N≡)C…HPh (intramol)	2.401	-2.3			
	All		-24.0	All		-27.9
	intermol		-17.6	intermol		-25.3

						32
		Ar1_6 (CC	DNH ₂)		Alk1 2	(CONH ₂)
+DMSO (CONH ₂),	$\begin{array}{c} \text{N-HO(=S) (intermol)} \\ (\text{C=})\text{OH (intermol)} \\ (\text{C=})\text{OH (intermol)} \\ (\text{H})\text{OH (intramol)} \\ (\text{N=})\text{CH(Ar) (intramol)} \\ \hline \textbf{All} \\ \textbf{intermol} \end{array}$	1.859 3.109 3.128 2.290 2.403	6.8 0.4 0.4 4.0 2.3 -13.8 -7.5	N-HO(=S) (intermol) $(C=)OH (intermol)$ $(C=)OH (intermol)$ $(H)OC(=N) (intramol)$ All intermol	1.864 3.020 3.184 2.805	-6.7 -0.5 -0.3 -2.4 -9.9 -7.5
PCM/DMSO		Ar1_9 (CO			Alk1 9	(CONH ₂)
	(C=)OH(O) (intramol)	1.505	-25.4	N–H…O(=S) (intermol)	1.808	7.9
	N–HO(=S) (intermol)	1.814	-7.8	(C=)OH (intermol)	2.958	0.6
	(C=)OH (intermol)	3.096	-0.4	(C=)OH (intermol)	2.922	0.6
	(C=)UH (intermol)	2.839	-0.8	(C=)OH(O) (intramol)	1.386	41.6
	A11		21 2		2.102	5.5 56 1
	All		-34.3	All		-50.1
	Intermot		-9.0	Intermor		-/.1

						33
+acetone (OH)						
	DhH = C(-N) (intromal)	All_0 ($(\mathbf{H})\mathbf{O} = \mathbf{C}(-\mathbf{N})$	AIKI_	2(01)
	PhO HC (intramol)	2.369	-2.4	$(\Pi)OC(=\Pi)$	2.731	-2.0
	$\Omega_{-H} = \Omega(=C)$ (intermol)	1 756	-4.1	C-H N (intermol)	2 490	-1.6
		1.750	-15.8		2.470	-159
	intermol		-9.3	intermol		-13.1
		4	1+		\$	Yr
+acetone					\mathbf{r}	
(OH).		XX				
PCM/acetone		Ar1_6 (OH)			2 (OH)
	O–H…O(=C) (intermol)	1.706	-11.0	O–H…O(=C) (intermol)	1.633	-14.5
	PhH O(=C) (intermol)	2.667	-1.3	(C≡)NH(intermol)	3.000	-0.5
	PhOHC (intramol)	2.288	-4.1	(H)OC(\equiv N) (intramol)	2.779	-2.6
	$PhHC(\equiv N)$ (intramol)	2.403	-2.3			
	All		-18.7	All		-17.6
	intermol		-12.3	intermol		-15.0

						34
					Alk1 5	
	(CONH)H O(=C) (intermol)	1 932	-56	(CONH)H = O(=C) (intermol)	1 923	-5.8
	$(C=)O H(CH_2)$ (intermol)	2 365	-2.4	$(C=)O H(CH_2)$ (intermol)	2 388	-23
	PhH $C(\equiv N)$ (intramol)	2.305	-2.5	(C=)O H(C) (intramol)	2.300	-4 5
		2.570	2.0	$(cvcleC=)O C(\equiv N) (intramol)$	2.833	-2.3
	All		-10.5	All	2.035	-14.9
+acetone	intermol		-8.0	intermol		-8.1
(CONH ₂)		the			XX	
		\sim	XX		×~	YT
		Ar1_9 (C	ONH ₂)		Alk1_9 (CONH ₂)
	(CONH)HO(=C) (intermol)	1.891	-6.2	(CONH)HO(=C) (intermol)	1.889	-6.3
	$(C=)OH(CH_2)$ (intermol)	2.461	-1.9	$(C=)OH(CH_2)$ (intermol)	2.508	-1.7
	(C=)OH(O) (intramol)	1.511	-24.5	(C=)OH(O) (intramol)	1.397	-39.7
				(cycleC=)OH(C) (intramol)	2.122	-5.9
	All		-32.6	All		-53.6
	intermol		-8.1	intermol		-8.0
+acetone (CONH ₂), PCM/acetone		A	1		芬	4 74
		Ar1_6 (C	ONH ₂)		Alk1_2 (CONH ₂)
	(CONH)HO(=C) (intermol)	1.958	-5.3	(CONH)H = O(=C) (intermol)	1 934	-6.0
	$(C=)OH(CH_2)$ (intermol)	3.034	-0.5	$(C=)O H(CH_2)$ (intermol)	2 356	-2.8
	(H)OH(C) (intramol)	2.290	-4.0	$(H)O C(\equiv N) \text{ (intramol)}$	2.810	-2.6
	$PhHC(\equiv N)$ (intramol)	2.399	-2.3		2.010	-11 4
	All		-12.1	intermol		-11.4
	intermol		-5.8			-0.0

		35
		\mathcal{H} ONH ₂ -CN)
(CONH)HO(=C) (intermol)	2.130	-3.8
$(C\equiv)NH(CH_2)$ (intermol)	2.719	-1.0
(H)OC(≡N) (intramol)	2.821	-2.4
All		-7.2
intermol		-4.8
	X	$\langle \checkmark$
	Alk1_9 (C	ONH ₂ -CN)
(CONH)HO(=C) (intermol)	1.984	-5.1
$(C \equiv)NO(=C)$ (intermol)	3.394	-0.8
(cycleC=)OH(C) (intramol)	2.142	-5.7
(C=)OH(O) (intramol)	1.394	-40.2
All		-51.8
intermol		-5.9