

SUPPORTING INFORMATION

Figure S1. ¹H-NMR spectrum of PBCE-OH with resonance assignments.

Figure S2. Calorimetric curve of PBCE in the region -10 to 30°C to visualize the glass transition. Red lines serve as eye guides to highlight the phenomenon.

	II scan, DSC							
Polymer	T _g (°C)	$\frac{\Delta C_p}{(J/^{\circ}C g)}$	T _{m,1} (°C)	$\begin{array}{c} \Delta H_{m,1} \\ (J/g) \end{array}$	T _{m,2} (°C)	$\begin{array}{c} \Delta H_{m,2} \\ (J/g) \end{array}$		
PBCE	9	0.141	-	-	166	33		
A50B50	-34	0.330	52	3	143	13		
A30B70	-31	0.389	64	16	134	8		
A50C50	-29	0.440	-	-	119	17		
A30C70	-32	0.451	51	2	110	4		

Table S1. Thermal characterization data (II scan DSC after quenching from the melt).

Table S2. Degree of crystallinity as a function of the composting time.

			X _c (%)						
	Polyme	er	0 d	56 d	84	d			
	PBCE	E	38	39	4	1			
	A50B5	0	28	38	4	1			
	A30B7	0	26	37	4	0			
	A50C5	0	26	43	4	5			
	A30C7	0	24	40	4	4			
Polymer	PBCE		A50B50	A30	B 70	<u>A5</u>	0C50	A30C70	
Thickness (µm)	146±14		241±13	163	3±3	262±8		263±29	
			8°C	1					
GTR (cm ³ /m ² d bar)	157 ± 1		341 ± 2	329	329 ± 2		5 ± 1	604 ± 1	
S (cm ³ /cm ² bar)		1.2	$E^{-02} \pm 3.4E^{-03}$					$2.7E^{-01} \pm 9.4E^{-03}$	
$D(cm^2/s)$		9.7	$E^{-07} \pm 2.7E^{-7}$					$4.2E^{-08} \pm 1.4E^{-9}$	
$t_L(s)$			128 ± 37					1066 ± 35	
15°C									
GTR (cm ³ /m ² d bar)	160 ± 1		1113 ± 2	1026	5 ± 4	776	5 ± 2	1070 ± 1	
S (cm ³ /cm ² bar)		1.	$1E^{0} \pm 5E^{-03}$	1.4E ⁰ =	± 5E ⁻⁰³	3.8-01	$\pm 2E^{-03}$	$1.4E^0 \pm 5E^{-03}$	
D (cm ² /s)		3.0	$DE^{-08} \pm 8E^{-11}$	3.9E ⁻⁰⁸	± 7E ⁻¹⁰	5.8E-08	$^{8} \pm 3E^{-10}$	$1.4\mathrm{E}^{-08} \pm 5\mathrm{E}^{-11}$	

$t_L(s)$		128 ± 37	3000 ± 57	1678 ± 7	3080 ± 6			
23°C								
GTR (cm ³ /m ² d bar)	659 ± 2	2627 ± 5	2263 ± 5	2480 ± 8	2473 ± 5			
S (cm ³ /cm ² bar)	$1.2E^0 \pm 1E^{-02}$	$1.2E^0 \pm 5E^{-03}$	$1.3E^0 \pm 5E^{-03}$	$1.3E^0 \pm 8E^{-03}$	$1.4E^0 \pm 3E^{-02}$			
$D(cm^2/s)$	$9.3E^{-09} \pm 8E^{-11}$	$6.7E^{-08} \pm 1E^{-10}$	$5.4E^{-08} \pm 2E^{-1}$	5.5E ⁻⁰⁸ ±3E ⁻¹⁰	3.2E ⁻⁰⁸ ±7E ⁻¹⁰			
$t_L(s)$	3810 ± 34	1716 ± 3	2126 ± 6	1775 ± 11	1369 ± 30			

Table S3. Permeability data of CO_2 gas at 8, 15 and 23°C and film thickness.

Table S4. Perm-selectivity values at 8,15 and 23°C.

Polymer	CO ₂ /O ₂	CO ₂ /N ₂	CO_2/C_2H_4	CO_2/O_2	CO_2/N_2	CO_2/C_2H_4	CO_2/O_2	CO ₂ /N ₂	CO_2/C_2H_4
	8°C			15°C			23°C		
PBCE	1.01	1.57	2.41	1.01	1.62	0.92	1.49	7.42	4.20
A50B50	2.19	2.46	2.11	4.12	9.41	8.45	5.47	12.83	7.67
A30B70	3.06	4.93	3.40	5.31	8.82	7.45	7.12	10.76	5.24
A50C50	0.94	1.74	1.51	3.39	6.83	4.91	4.63	11.92	5.65
A30C70	3.06	4.93	3.40	5.31	8.82	7.45	5.30	13.97	7.09

Table S5. Activation energy for the gas transmission rate (E_{GTR}), the Heat of Solution (H_s) and the Diffusion (E_D) process at 8, 15 and 23°C. In the brackets the linear regression coefficients (R^2).

Polymer	E _{GTR}	H _S	ED	E _{GTR}	Hs	ED	
	(J/mol)	(J/mol)	(J/mol)	(J/mol)	(J/mol)	(J/mol)	
		O_2		CO ₂			
DRCE	48 ± 0.16			66 ± 0.11			
FDCL	(0.8)	-		(0.8)			
150B50	52 ± 0.16			94 ± 0.13	211 ± 0.18	-121 ±	
AJUDJU	(1)			(1)	(0.7)	0.13 (0.5)	
130B70	-6 ± 0.22	116 ± 0.24	100 ± 0.13	89 ± 0.10	-9 ± 0.07	30 ± 0.03	
AJUD/U	(0.2)	(1)	(1)	(1)	(1)	(1)	
150050	37 ± 0.10			111 ± 0.19	108 ± 0.15	-5 ± 0.20	
A30C30	(0.7)			(1)	(1)	(1)	
130070	40 ± 0.21			65 ± 0.22	76 ±0.19	-10 ± 0.22	
ASUC/U	(0.8)			(1)	(1)	(0.0)	
		N ₂		C ₂ H ₄			
DPCE	-6 ± 0.11			39 ± 0.20			

	(0.8)		(0.6)	
A50050	19 ± 0.10		35 ± 0.05	
ASUDSU	(0.5)	 	(0.6)	
A20070	10 ± 0.13		67 ± 0.21	
ASUD/U	(0.2)	 	(1)	
150050	22 ± 0.28		50 ± 0.12	
ASUCSU	(0.6)	 	(0.8)	
120070	17 ± 0.12		32 ± 0.03	
ASUC/U	(0.8)	 	(0.6)	