# Phosphotungstic acid-supported multifunctional organocatalyst containing 9amino(9-deoxy)*epi*-cinchonidine and Brønsted acid and its application in asymmetric aldol reaction

Ling Lan, Guangxin Xie, Tao Wu, Dandan Feng and Xuebing Ma\*

## **Table of contents**

| 1. | Acid capacity2                                                                                                    |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2. | TGA2                                                                                                              |
| 3. | N <sub>2</sub> adsorption-desorption isotherm3                                                                    |
| 4. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of CDNH <sub>2</sub> ( <i>n</i> )–PO <sub>3</sub> H <sub>2</sub> 6 |
| 5. | IR spectra10                                                                                                      |
| 6. | HPLC and <sup>1</sup> H NMR spectra for enantioselectivity and diastereoselectivity of aldol                      |
|    | adducts11                                                                                                         |
| 7. | Reusability of CDNH <sub>2</sub> ( <i>n</i> 4)–HPW/0.524                                                          |

#### 1. Acid capacity

| Entry | Cat.                               | Mass (mg) | V <sub>NaOH</sub> (mL) | Acid capacity (mmol g <sup>-1</sup> ) |
|-------|------------------------------------|-----------|------------------------|---------------------------------------|
| 1     | $\text{CDNH}_2(n2) - \text{HPW}/2$ | 100       | 79                     | 39.5                                  |
| 2     | CDNH <sub>2</sub> (n6)–HPW/2       | 100       | 78                     | 39.0                                  |
| 3     | $\text{CDNH}_2(n4) - \text{HPW}/4$ | 100       | 90                     | 45.0                                  |
| 4     | $\text{CDNH}_2(n4) - \text{HPW}/2$ | 100       | 81                     | 40.5                                  |
| 5     | CDNH <sub>2</sub> (n4)–HPW/1       | 100       | 24                     | 12.0                                  |
| 6     | CDNH <sub>2</sub> (n4)–HPW/0.5     | 100       | 123                    | 61.5                                  |

Table S1 The acid capacities of various  $\text{CDNH}_2(n2)$ -HPW catalysts

After the sample was well-ground, 30 mg of the sample was charged into a transparent tube, added 10 mL of cyclohexane and two drops of Hammett indicator, and stirred for 12 h at 30 °C. The results were listed in Table S2, in which the mark (+) indicated that the color of the base form is changed to that of the conjugated acid form, while the mark (–) meant that the color is not changed.

|                                  | $CDNH_2(n2)$<br>-HPW/2 | CDNH <sub>2</sub> ( <i>n</i> 6)<br>–HPW/2 | CDNH <sub>2</sub> ( <i>n</i> 4)<br>–HPW/0.5 | CDNH <sub>2</sub> ( <i>n</i> 4)<br>–HPW/1 | CDNH <sub>2</sub> ( <i>n</i> 4)<br>–HPW/2 | CDNH <sub>2</sub> ( <i>n</i> 4)<br>–HPW/4 |
|----------------------------------|------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Neutral red ( $pKa = 6.8$ )      | +                      | +                                         | +                                           | +                                         | +                                         | +                                         |
| Methyl red (pKa = $4.8$ )        | +                      | +                                         | +                                           | +                                         | +                                         | +                                         |
| Bromophenol blue (pKa = $3.86$ ) | +                      | +                                         | +                                           | +                                         | +                                         | +                                         |
| Dimethyl yellow (pKa = 3.3)      | +                      | +                                         | +                                           | _                                         | +                                         | +                                         |
| Crystal violet (pKa = 0.8)       | _                      | -                                         | +                                           |                                           | _                                         | _                                         |
| Anthraquinone (pKa = -8.0)       |                        |                                           | -                                           |                                           |                                           |                                           |

**Table S2** The acid strengths of  $CDNH_2(n)$ –HPW determined by Hammett indicators

"+" represented the color of acid type; "-" represented the color of alkali type.

#### 2. TGA





3.  $N_2$  adsorption-desorption isotherm





#### 4. <sup>1</sup>H and <sup>13</sup>C NMR spectra of CDNH<sub>2</sub>(*n*)–PO<sub>3</sub>H<sub>2</sub>



**CDNH<sub>2</sub>(n2)–PO<sub>3</sub>H<sub>2</sub>:** pale yellow solid, mp: 155-156 °C,  $\delta_{\rm H}$  (300.1 MHz, D<sub>2</sub>O, Me<sub>4</sub>Si): 9.24 (1 H, d,  ${}^{3}J$  = 6.0 Hz), 8.65 (1 H, d,  ${}^{3}J$  = 9.0 Hz), 8.32 (1 H, d,  ${}^{3}J$  = 9.0 Hz), 8.28 (1 H, d,  ${}^{3}J$  = 6.0 Hz), 8.22 (1 H, t,  ${}^{3}J$  = 6.0 Hz), 8.09 (1 H, t,  ${}^{3}J$  = 6.0 Hz), 5.63 (1 H, d,  ${}^{3}J$  = 9.0 Hz), 4.37 (1 H, d,  ${}^{3}J$  = 6.0 Hz), 3.77-3.90 (2 H, m), 3.45 (1 H, s), 3.17 (1 H, d,  ${}^{3}J$  = 12.0 Hz), 2.52-2.73 (8 H, m), 2.28 (1 H, s), 1.69-1.98 (8 H, m), 1.11 (1 H, s).  $\delta_{\rm C}$  (75.0 MHz, CDCl<sub>3</sub>): 151.9, 145.8, 139.6, 136.6, 132.5, 128.4, 124.9, 123.3, 121.4, 60.6, 56.6, 42.9, 33.4, 32.6, 31.8, 31.7, 29.9, 29.3, 28.2, 25.9, 24.6, 24.4, 24.3. Anal. Calcd for C<sub>23</sub>H<sub>34</sub>N<sub>3</sub>O<sub>3</sub>PS<sub>2</sub>: C, 55.74; H,

6.91; N, 8.48. Found: C, 55.78; H, 6.90; N, 8.49. MS (ESI+) *m/z* 495.8 [M+H]<sup>+</sup>.







**CDNH<sub>2</sub>(n4)–PO<sub>3</sub>H<sub>2</sub>:** pale yellow solid, mp: 155-157 °C,  $\delta_{\rm H}$  (300.1 MHz, D<sub>2</sub>O, Me<sub>4</sub>Si): 9.14 (1 H, d, <sup>3</sup>*J* = 6.0 Hz), 8.61 (1 H, d, <sup>3</sup>*J* = 9.0 Hz), 8.25 (1 H, d, <sup>3</sup>*J* = 9.0 Hz), 8.08-8.16 (2 H, m), 8.01 (1 H, t, <sup>3</sup>*J* = 6.0 Hz), 5.39 (1 H, d, <sup>3</sup>*J* = 9.0 Hz), 4.23 (1 H, d, <sup>3</sup>*J* = 6.0 Hz), 3.72-3.88 (2 H, m), 3.34-3.44 (1 H, m), 3.11-3.15 (1 H, m), 2.45-2.67 (8 H, m), 2.25 (1 H, s), 1.93-1.95 (3 H, m), 1.52-1.79 (9 H, m), 1.09 (1 H, q, <sup>3</sup>*J* = 6.0 Hz).  $\delta_{\rm C}$  (75.0 MHz, CDCl<sub>3</sub>): 153.4, 146.4, 140.9, 135.7, 131.7, 128.1, 124.9, 124.1, 120.9, 61.1, 56.3,

42.6, 33.4, 32.7, 32.0, 32.0, 31.6, 31.0, 30.7, 29.4, 28.8, 27.1, 24.7, 24.5, 24.4.  $\delta_p$  (121.5 MHz,  $\delta_{85\%H3PO4} = 0$  ppm): 31.1 (s). Anal. Calcd for C<sub>25</sub>H<sub>38</sub>N<sub>3</sub>O<sub>3</sub>PS<sub>2</sub>: C, 57.34; H, 7.31; N, 8.02. Found: C, 57.30; H, 7.30; N, 8.05. MS (ESI+) *m/z* 523.9 [M+H]<sup>+</sup>.











**CDNH<sub>2</sub>(n4)–PO<sub>3</sub>H<sub>2</sub>**: pale yellow solid, mp: 160-162 °C,  $\delta_{\rm H}$  (300.1 MHz, D<sub>2</sub>O, Me<sub>4</sub>Si): 9.21 (1 H, s), 8.67 (1 H, d,  ${}^{3}J$  = 9.0 Hz), 8.07-8.28 (4 H, m), 5.53 (1 H, d,  ${}^{3}J$  = 9.0 Hz), 4.36 (1 H, s), 3.80-3.93 (2 H, m), 3.46 (1 H, s), 3.22 (1 H, s), 2.40-2.62 (8 H, m), 2.29 (1 H, s), 1.99 (3 H, m), 1.14-1.82 (14 H, m).  $\delta_{\rm C}$  (75.0 MHz, CDCl<sub>3</sub>): 152.5, 146.6, 140.9, 136.0, 132.1, 128.2, 125.1, 124.2, 121.4, 60.9, 56.4, 42.9, 33.5, 32.9, 32.3, 32.3, 32.2, 30.7, 30.5, 29.7, 29.6, 29.0, 28.6, 27.2, 24.8, 24.6, 23.6. Anal. Calcd for

C<sub>27</sub>H<sub>42</sub>N<sub>3</sub>O<sub>3</sub>PS<sub>2</sub>: C, 58.78; H, 7.67; N, 7.62. Found: C, 58.85; H, 7.70; N, 7.60. MS (ESI+) *m/z* 552.0 [M+H]<sup>+</sup>.







## 5. IR spectra



IR spectra of  $\text{CDNH}_2(n4)$ – $\text{PO}_3\text{H}_2(a)$ ,  $\text{CDNH}_2(n4)$ –HPW/0.5 (b),  $\text{CDNH}_2(n4)$ –HPW/1 (c),  $\text{CDNH}_2(n4)$ –HPW/2 and  $\text{CDNH}_2(n4)$ –HPW/4.

6. HPLC and <sup>1</sup>H NMR spectra for enantioselectivity and diastereoselectivity of aldol adducts









(4)







(7)





(9)

ÇH₃

QН



(11)









(14)



(15)



(16)



(17)





### 7. Reusability of CDNH<sub>2</sub>(*n*4)–HPW/0.5

| Run | Yield (%) <sup>b</sup> | syn/anti <sup>c</sup> | % ee ( <i>Syn</i> ) <sup>d</sup> |
|-----|------------------------|-----------------------|----------------------------------|
| 1   | 96                     | 93/7                  | 96                               |
| 2   | 96                     | 93/7                  | 95                               |
| 3   | 97                     | 92/8                  | 96                               |
| 4   | 96                     | 93/7                  | 96                               |
| 5   | 96                     | 93/7                  | 96                               |
| 6   | 95                     | 92/8                  | 95                               |
| 7   | 94                     | 90/10                 | 95                               |
| 8   | 94                     | 89/11                 | 94                               |

Table s3. Recycling experiments of CDNH<sub>2</sub>(n4)–HPW/0.5 in aldol addition reaction <sup>a</sup>

<sup>a</sup> Reaction conditions: 40 mg CDNH<sub>2</sub>(*n*4)–HPW/0.5 (0.012 mmol, 6 mol%), cyclohexanone (0.5 mL), *p*-nitrobenzaldehyde (30.2 mg, 0.2 mmol), water (0.5 mL), 15 °C, 72 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by <sup>1</sup>H NMR. <sup>*d*</sup> Determined by chiral HPLC.