Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Iron-catalyzed addition/cyclization cascade of activated alkenes with alcohols: access to carbonyl substituted quinoline-2,4-diones

Shi-Sheng Wang,^a Hong Fu,^a Guanlin Wang,^a Meng Sun,^b and Ya-Min Li*a

^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China.

1. General information	S2
2. Typical procedures for the synthesis of substrates	S2
3. General procedure for addition/cyclization cascade	S2
4. Characterization of products	S3
5. Charts of products	S9

^a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China. E-mail: liym@kmust.edu.cn.

1. General information

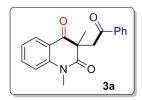
NMR spectra were recorded on Bruker AVANCE DRX 500 (500 MHz for ¹H; 126 MHz for ¹³C) and Bruker DRX 600 (600 MHz for ¹H; 151 MHz for ¹³C) instruments internally referenced to TMS signal. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants, *J*, are reported in hertz. Mass spectra were mearsured using Agilent 6530 Accurate-Mass Q-TOF LC/MS. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and only major peaks are reported in cm⁻¹. The starting materials were purchased from Aldrich, Acros Organics, TCI or J&K Chemicals and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM).

2. Typical procedures for the synthesis of substrates

The preparation of amide 1 were described in previous reports. S1

To the solution of anthranilonitrile S-1 (2.0 mmol) and Et₃N (2.4 mmol) in 20 mL dry CH₂Cl₂ was added acryloyl chloride (2.2 mmol) at 0 °C. The mixture was allowed to stir at room temperature. After completion of the reaction, the reaction was quenched with saturated NaHCO₃ solution, then extracted with CH₂Cl₂, washed with brine, dried over MgSO₄ and concentrated by evaporator affording amide S-2 without any further purification.

To the solution of amide S-2 (2.0 mmol) in 20 mL dry THF was added NaH (3.0 mmol) at 0 $^{\circ}$ C under argon. The mixture was allowed to stir at room temperature for 1h, then MeI (3.0 mmol) was added to the reaction mixture dropwise at 0 $^{\circ}$ C. The reaction mixture was warmed to room temperature. After completion of the reaction, the reaction was cooled to 0 $^{\circ}$ C and quenched with H₂O and extracted with ether. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure and purification by silica gel flash chromatography to afford amide 1.


3. General procedure for addition/cyclization cascade

A mixture of *o*-cyanoarylacrylamide **1** (0.3 mmol), alcohol **2** (1.5 mmol), FeCl₂ (0.015 mmol), and TBHP (0.9 mmol) in EtOAc (1.5 mL) was heated at 120 °C for 12 h. Upon completion as shown by TLC, the reaction mixture was washed with brine, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether/EtOAc as the eluent to afford the desired product **3**.

Reference:

(S1) Y.-M. Li, S.-S. Wang, F.-C. Yu, Y. Shen and K.-J. Chang, Org. Biomol. Chem. 2015, 13, 5376.

4. Characterization of products

¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 7.4 Hz, 1H), 7.94 (d, J = 7.4 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.0 Hz, 1H), 7.43 (t, J = 7.3 Hz, 2H), 7.25 (d, J = 8.3 Hz, 1H), 7.19 (t, J = 7.3 Hz, 1H), 4.13–4.04 (m, 2H), 3.51 (s, 3H), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 196.5, 173.9, 143.3, 135.8, 135.7, 133.4, 128.5, 128.33, 128.29, 122.8, 119.6, 114.9, 53.4, 46.9, 29.8, 24.5; IR (KBr, cm⁻¹) v 2968, 1691, 1674, 1657, 1599, 1387, 1344, 1292, 1222, 754, 554; HRMS (TOF-ESI) calc. for C₁₉H₁₇NO₃ (M+H)⁺, 308.1281; found, 308.1287.

¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 7.9 Hz, 2H), 7.56–7.53 (m, 1H), 7.48–7.42 (m, 3H), 7.35–7.31 (m, 4H), 7.25–7.24 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 5.34 (s, 2H), 4.20–4.09 (m, 2H), 1.56 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 196.3, 174.3, 142.4, 136.2, 135.8, 135.7, 133.5, 128.9, 128.5, 128.4, 128.3, 127.2, 126.2, 122.9, 119.8, 115.9, 53.6, 47.0, 46.0, 24.6; IR (KBr, cm⁻¹) v 2927, 1666, 1599, 1489, 1379, 1319, 1253, 1221, 1185, 1110, 754, 530; HRMS (TOF-ESI) calc. for C₂₅H₂₁NO₃ (M+H)⁺, 384.1594; found, 384.1599.

¹H NMR (500 MHz, CDCl₃) δ 7.95–7.94 (m, 2H), 7.60–7.54 (m, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.05 (d, J = 8.5 Hz, 1H), 6.91–6.85 (m, 1H), 4.09–4.00 (m, 2H), 3.51 (s, 3H), 1.48 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 193.7, 173.4, 163.7 (d, J_{C-F} = 266.0 Hz), 144.5, 136.0 (d, J_{C-F} = 11.8 Hz), 135.7, 133.5, 128.5, 128.3, 111.0 (d, J_{C-F} = 21.6 Hz), 110.7 (d, J_{C-F} = 2.4 Hz), 109.3 (d, J_{C-F} = 8.6 Hz), 54.3, 46.2, 30.6, 24.2; IR (KBr, cm⁻¹) v 2911, 1667, 1635, 1473, 1343, 1221, 1193, 1011, 838, 799, 698, 575; HRMS (TOF-ESI) calc. for C₁₉H₁₆FNO₃ (M+Na)⁺, 348.1006; found, 348.1010.

¹H NMR (500 MHz, CDCl₃) δ 7.96–7.94 (m, 2H), 7.57–7.54 (m, 1H), 7.49 (t, J = 8.2 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.22 (dd, J = 8.0, 0.7 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 4.07–3.96 (m, 2H), 3.52 (s, 3H), 1.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 194.1, 173.0, 145.1, 136.0, 135.9, 134.3, 133.4, 128.5, 128.3, 126.4, 117.4, 113.9, 54.5, 45.6, 30.8, 23.6; IR (KBr, cm⁻¹) ν 2929, 1667, 1581, 1453, 1339, 1284, 1222, 1138, 1201, 817, 745, 638, 535; HRMS (TOF-ESI) calc. for C₁₉H₁₆ClNO₃ (M+H)⁺, 342.0891; found, 342.0882.

 1 H NMR (500 MHz, CDCl₃) δ 7.95–7.93 (m, 2H), 7.87 (s, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.47–7.41 (m, 3H), 7.15 (d, J = 8.5 Hz, 1H), 4.12–4.03 (m, 2H), 3.50 (s, 3H), 2.37 (s, 3H), 1.45 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 197.8, 196.7, 173.7, 141.2, 136.6, 135.7, 133.4, 132.5, 128.5, 128.30, 128.25, 119.3, 114.9, 53.3, 46.9, 29.8, 24.5, 20.3; IR (KBr, cm⁻¹) v 2923, 1658, 1602, 1465, 1340, 1219, 1107, 820, 770, 686, 525; HRMS (TOF-ESI) calc. for C₂₀H₁₉NO₃ (M+H)⁺, 322.1438; found, 322.1440.

¹H NMR (500 MHz, CDCl₃) δ 7.94–7.93 (m, 2H), 7.74 (dd, J = 8.1, 3.1 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.40–7.36 (m, 1H), 7.23 (dd, J = 9.1, 4.0 Hz, 1H), 4.14–4.03 (m, 2H), 3.51 (s, 3H), 1.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 195.7, 173.5, 158.4 (d, J_{C-F} = 244.6 Hz), 139.7, 135.6, 133.6, 128.5, 128.3, 122.8 (d, J_{C-F} = 23.5 Hz), 120.8 (d, J_{C-F} = 6.1 Hz), 116.7 (d, J_{C-F} = 7.0 Hz), 114.0 (d, J_{C-F} = 23.2 Hz), 53.2, 47.2, 30.1, 24.4; IR (KBr, cm⁻¹) v 2924, 1669, 1472, 1328, 1166, 1098, 1005, 774, 688, 621, 552; HRMS (TOF-ESI) calc. for C₁₉H₁₆FNO₃ (M+H)⁺, 326.1187; found, 326.1187.

¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 2.6 Hz, 1H), 7.94–7.93 (m, 2H), 7.60 (dd, J = 8.9, 2.6 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.20 (d, J = 8.9 Hz, 1H), 4.14–4.04 (m, 2H), 3.50 (s, 3H), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 195.4, 173.6, 141.8, 135.53, 135.46, 133.6, 128.7, 128.6, 128.3, 127.8, 120.6, 116.6, 53.5, 47.2, 30.0, 24.3; IR (KBr, cm⁻¹) v 2976, 1662, 1467,1428, 1333, 1187, 1137, 1106, 929, 758, 688, 562; HRMS (TOF-ESI) calc. for C₁₉H₁₆ClNO₃ (M+H)⁺, 342.0891; found, 342.0894.

¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.6 Hz, 1H), 7.94 (d, J = 7.9 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 6.72–6.69 (m, 2H), 4.05 (s, 2H), 3.90 (s, 3H), 3.48 (s, 3H), 1.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 195.0, 174.3, 165.7, 145.2, 135.7, 133.3, 130.6, 128.4, 128.2, 113.5, 108.1, 100.8, 55.6, 53.0, 46.7, 29.7, 24.8; IR (KBr, cm⁻¹) v 2928, 1651, 1600, 1452, 1336, 1226, 1100, 1030, 839, 741, 541; HRMS (TOF-ESI) calc. for C₂₀H₁₉NO₄ (M+H)⁺, 338.1387; found, 338.1390.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 7.4 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 6.9 Hz, 2H), 7.25 (s, 1H), 7.17 (d, J = 8.3 Hz, 1H), 4.13–4.04 (m, 2H), 3.49 (s, 3H), 1.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 195.4, 173.9, 144.3, 142.2, 135.5, 133.6, 129.8, 128.5, 128.3, 123.1, 118.0, 115.2, 53.5, 47.1, 31.0, 24.4; IR (KBr, cm⁻¹) v 2956, 1667, 1596, 1461, 1431, 1378, 1330, 1291, 1100, 868, 760, 688; HRMS (TOF-ESI) calc. for C₁₉H₁₆CINO₃ (M+Na)⁺, 364.0711; found, 364.0716.

 1 H NMR (500 MHz, CDCl₃) δ 7.94–7.91 (m, 3H), 7.56 (t, J = 7.4 Hz, 1H), 7.45–7.42 (m, 3H), 7.34 (dd, J = 8.3, 1.6 Hz, 1H), 4.12–4.03 (m, 2H), 3.50 (s, 3H), 1.46 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 197.8, 195.6, 173.9, 144.2, 135.5, 133.6, 130.9, 129.7, 128.5, 128.3, 126.1, 118.3, 118.2, 53.5, 47.2, 30.0, 24.4; IR (KBr, cm $^{-1}$) v 2924, 1664, 1599, 1459, 1429, 1332, 1292, 1221, 1027, 907, 730, 533; HRMS (TOF-ESI) calc. for C₁₉H₁₆BrNO₃ (M+Na) $^{+}$, 408.0206; found, 408.0208.

 1 H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 8.4, 1.2 Hz, 1H), 7.57–7.52 (m, 2H), 7.45–7.42 (m, 2H), 6.71 (s, 1H), 4.07 (s, 2H), 4.03 (s, 3H), 3.92 (s, 3H), 3.53 (s, 3H), 1.46 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 197.9, 195.3, 174.3, 155.5, 145.1, 139.5, 134.5, 133.4, 128.5, 128.3, 112.3, 109.1, 98.3, 56.3, 56.2, 52.9, 47.1, 29.9, 25.0; IR (KBr, cm⁻¹) ν 2927, 1679, 1645, 1068, 1481, 1425, 1306, 1249, 1031, 734, 563; HRMS (TOF-ESI) calc. for C₂₁H₂₁NO₅ (M+Na)⁺, 390.1312; found, 390.1312.

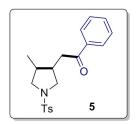
¹H NMR (500 MHz, CDCl₃) δ 7.96–7.94 (m, 2H), 7.86 (d, J = 2.5 Hz, 1H), 7.65 (d, J = 2.5 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 4.12–3.96 (m, 2H), 3.62 (s, 3H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 195.1, 174.4, 141.0, 137.3, 135.6, 133.6, 129.7, 128.6, 128.4, 126.6, 124.5, 123.5, 53.6, 47.0, 37.8, 23.1; IR (KBr, cm⁻¹) v 2926, 1703, 1668, 1649, 1613, 1453, 1334, 1221, 885, 528; HRMS (TOF-ESI) calc. for C₁₉H₁₅Cl₂NO₃ (M+H)⁺, 376.0502; found, 376.0503.

¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.68–7.65 (m, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 7.26 (d, J = 7.9 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 4.47–4.38 (m, 2H), 4.13–4.06 (m, 2H), 3.52 (s, 3H), 1.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 194.3, 171.1, 169.7, 143.4, 136.0, 135.4, 133.7, 128.6, 128.3, 127.8, 122.9, 121.0, 114.9, 68.6, 57.1, 44.3, 30.0, 20.2; IR (KBr, cm⁻¹) v 2921, 1643, 1569, 1464, 1381, 1227, 1014, 752, 608; HRMS (TOF-ESI) calc. for C₂₁H₁₉NO₅ (M+H)⁺, 366.1336; found, 366.1336.

¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 7.7, 1.3 Hz, 1H), 7.95 (d, J = 7.4 Hz, 2H), 7.59–7.53 (m, 2H), 7.43–7.40 (m, 2H), 7.34 (d, J = 7.5 Hz, 1H), 7.30–7.24 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 4.40–4.33 (m, 2H), 3.57 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 194.0, 171.5, 143.0, 135.7, 135.5, 133.5, 129.1, 128.5, 128.3, 128.1, 126.9, 122.9, 121.0, 114.9, 62.7, 48.5, 30.1; IR (KBr, cm⁻¹) v 2920, 1642, 1548, 1462, 1390, 1310, 1215, 1161, 1085, 670; HRMS (TOF-ESI) calc. for C₂₄H₁₉NO₃ (M+H)⁺, 370.1438; found, 370.1438.

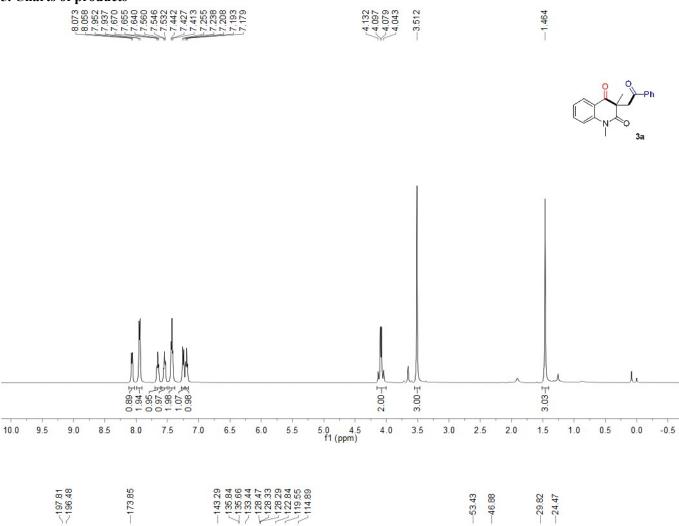
¹H NMR (500 MHz, CDCl₃) δ 8.65 (dd, J = 4.7, 1.8 Hz, 1H), 8.30 (dd, J = 7.6, 1.8 Hz, 1H), 7.93 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.15 (dd, J = 7.6, 4.8 Hz, 1H), 4.17–4.02 (m, 2H), 3.64 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 196.1, 174.5, 154.4, 154.1, 136.8, 135.5, 133.7, 128.6, 128.4, 118.7, 114.9, 53.7, 47.3, 28.8, 24.4; IR (KBr, cm⁻¹) v 2921, 1645, 1568, 1551, 1514, 1461, 1388, 720, 609, 517; HRMS (TOF-ESI) calc. for C₁₈H₁₆N₂O₃ (M+H)⁺, 309.1234; found, 309.1235.

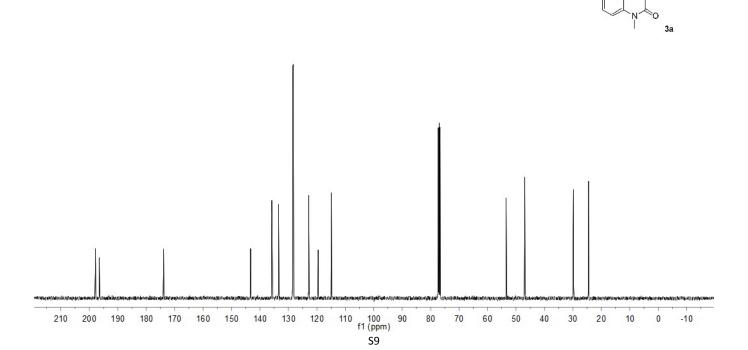
¹H NMR (500 MHz, CDCl₃) δ 8.07–8.05 (m, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.67–7.63 (m, 1H), 7.37–7.34 (m, 1H), 7.28–7.22 (m, 2H), 7.21–7.18 (m, 2H), 4.04–3.96 (m, 2H), 3.51 (s, 3H), 2.38 (s, 3H), 1.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.4, 196.5, 173.9, 143.3, 138.5, 136.2, 135.8, 131.8, 131.6, 129.0, 128.3, 125.6, 122.8, 119.6, 114.9, 53.8, 49.1, 29.8, 24.5, 21.3; IR (KBr, cm⁻¹) v 2929, 1699,1676, 1657,1608,1467, 1345, 1208, 1161, 1101, 788, 513; HRMS (TOF-ESI) calc. for C₂₀H₁₉NO₃ (M+H)⁺, 322.1438; found, 322.1444.

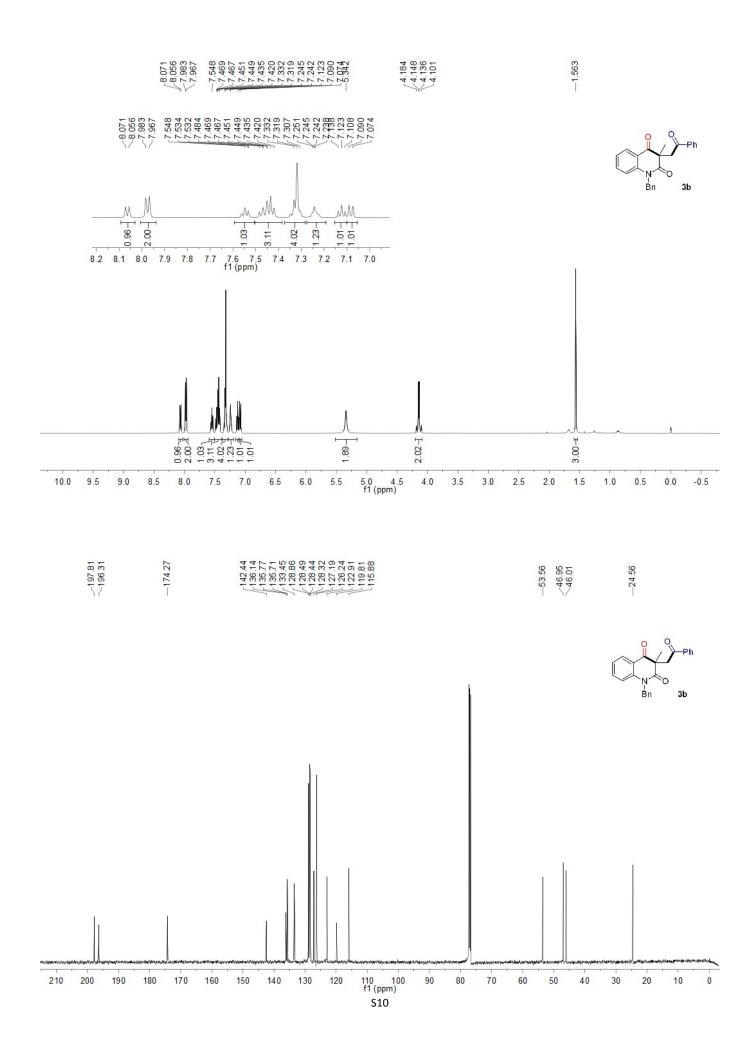

¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 7.7, 1.3 Hz, 1H), 7.68–7.64 (m, 2H), 7.42–7.36 (m, 2H), 7.33–7.18 (m, 3H), 4.13–3.98 (m, 2H), 3.52 (s, 3H), 1.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 196.3, 173.6, 143.3, 137.0, 135.9, 132.3, 131.8, 130.8, 130.0, 128.4, 126.8, 122.9, 119.6, 114.9, 54.1, 50.2, 29.9, 24.6; IR (KBr, cm⁻¹) v 2911, 1651, 1601, 1468, 1397, 1352, 1101, 817, 688, 545; HRMS (TOF-ESI) calc. for C₁₉H₁₆CINO₃ (M+H)⁺, 342.0891; found, 342.0904.

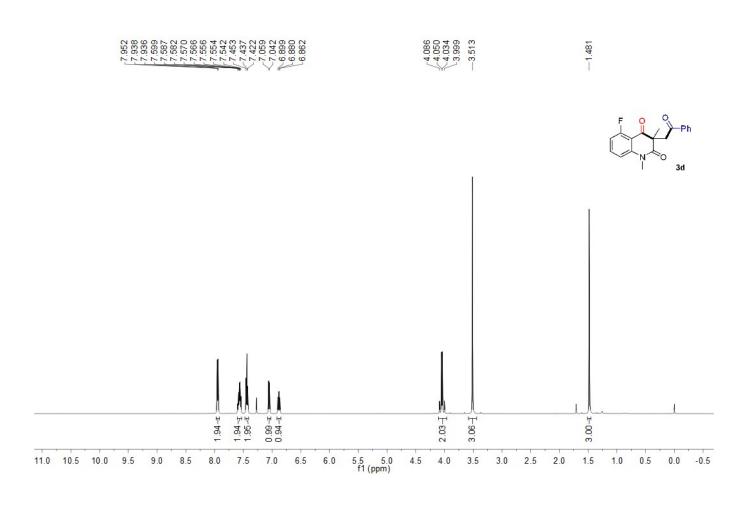
¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 7.7, 1.3 Hz, 1H), 7.75–7.74 (m, 2H), 7.67–7.63 (m, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 4.12–4.03 (m, 2H), 3.51 (s, 3H), 2.37 (s, 3H), 1.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.1, 196.5, 173.9, 143.3, 138.2, 135.8, 135.6, 134.2, 128.8, 128.3, 128.3, 125.5, 122.8, 119.5, 114.9, 53.4, 47.0, 29.8, 24.4, 21.2; IR (KBr, cm⁻¹) v 2922, 1663, 1595, 1467, 1342, 1298, 1245, 1185, 1098, 767, 618, 521; HRMS (TOF-ESI) calc. for C₂₀H₁₉NO₃ (M+H)⁺, 322.1438; found, 322.1445.

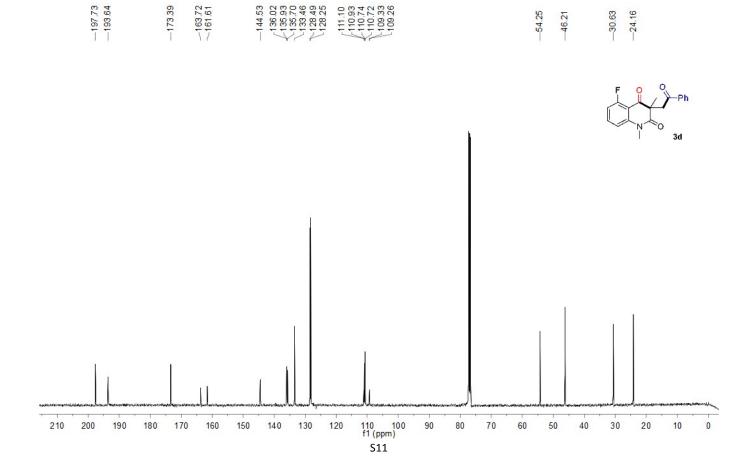
¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 8.5 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 4.08–3.99 (m, 2H), 3.50 (s, 3H), 1.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.5, 196.2, 173.6, 143.2, 137.3, 136.2, 135.9, 131.3, 130.1, 128.3, 126.8, 122.9, 122.8, 119.5, 114.9, 53.5, 46.6, 29.8, 24.5; IR (KBr, cm⁻¹) v 2922, 1681, 1639, 1618, 1568, 1464, 1209, 1101, 771, 521; HRMS (TOF-ESI) calc. for C₁₉H₁₆BrNO₃ (M+H)⁺, 386.0386; found, 386.0389.


¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 7.7, 1.2 Hz, 1H), 7.97 (dd, J = 8.7, 5.5 Hz, 2H), 7.68–7.65 (m, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 8.6 Hz, 2H), 4.09–4.00 (m, 2H), 3.52 (s, 3H), 1.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.5, 196.2, 173.8, 166.0 (d, J_{C-F} = 255.3 Hz), 143.3, 135.9, 132.2, 131.0 (d, J_{C-F} = 9.4 Hz), 128.4, 122.9, 119.5, 115.6 (d, J_{C-F} = 21.9 Hz), 114.9, 53.5, 46.7, 29.8, 24.5; IR (KBr, cm⁻¹) v 2962, 1657, 1600, 1475, 1383, 1342, 1224, 1104, 843, 759, 557; HRMS (TOF-ESI) calc. for C₁₉H₁₆FNO₃ (M+H)⁺, 326.1187; found, 326.1191.

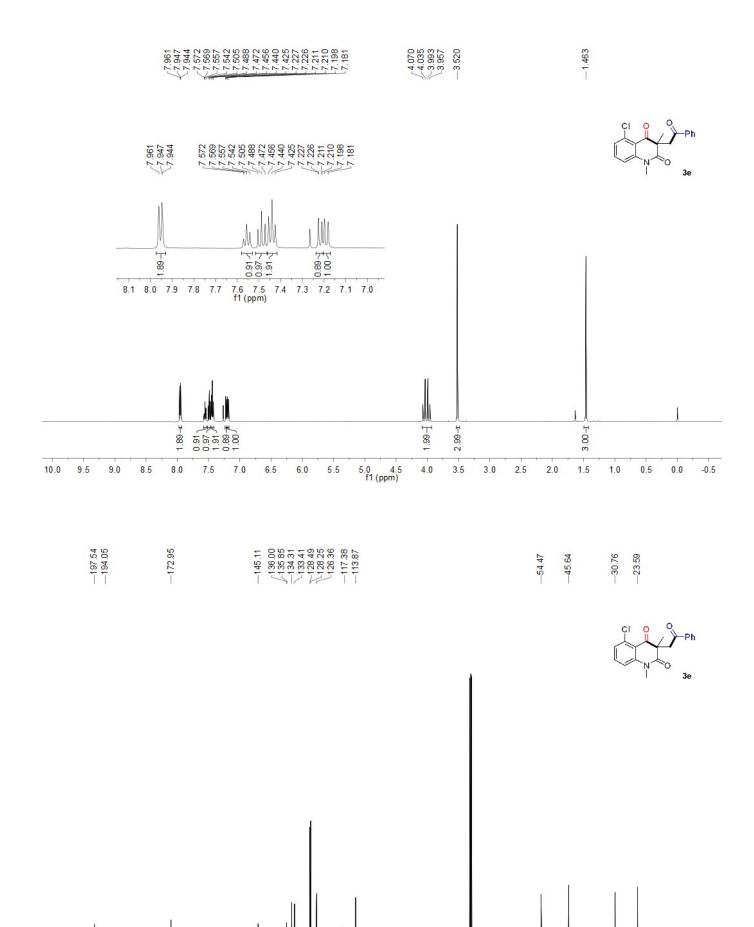

 1 H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 3.4 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.62 (d, J = 4.8 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 4.3 Hz, 1H), 4.08–3.98 (m, 2H), 3.51 (s, 3H), 1.45 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ 196.3, 190.6, 173.7, 143.3, 142.5, 135.9, 133.95, 132.6, 128.4, 128.0, 122.9, 119.5, 114.9, 53.4, 47.1, 29.8, 24.5; IR (KBr, cm⁻¹) v 2925, 1691, 1598, 1508, 1495, 1347, 1231, 1140, 853, 752, 692; HRMS (TOF-ESI) calc. for C₁₇H₁₅NO₃S (M+H)⁺, 314.0845; found, 314.0846.

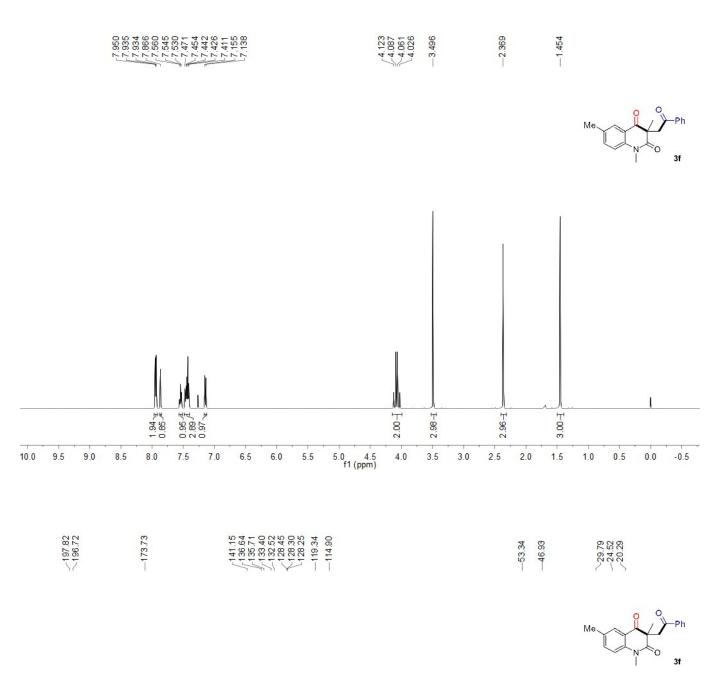


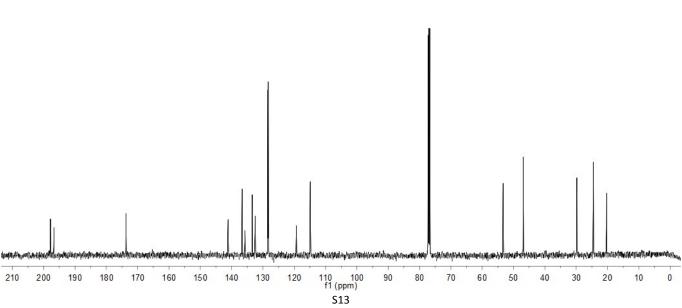

The compound is inseparable mixture. 1 H NMR (500 MHz, CDCl₃) δ 7.89–7.84 (m, 2H), 7.73–7.70 (m, 2H), 7.59–7.56 (m, 1H), 7.48–7.44 (m, 2H), 7.33–7.27 (m, 2H), 3.68–3.39 (m, 2H), 3.11–1.87 (m, 9H), 0.97–0.82 (m, 3H); 13 C NMR (101 MHz, CDCl₃) δ 198.4, 198.3, 143.4, 143.3, 136.6, 136.5, 133.9, 133.3, 133.3, 129.6, 128.7, 128.6, 127.91, 127.85, 127.6, 127.4, 54.3, 54.2, 53.2, 52.0, 41.2, 41.0, 38.7, 37.1, 36.5, 35.1, 21.50, 21.47, 16.4, 13.5; IR (KBr, cm⁻¹) v 2921, 1641, 1514, 1461, 1390, 1159, 1049; HRMS (TOF-ESI) calc. for $C_{20}H_{23}NO_{3}S$ (M+H)⁺, 358.1471; found, 358.1474.

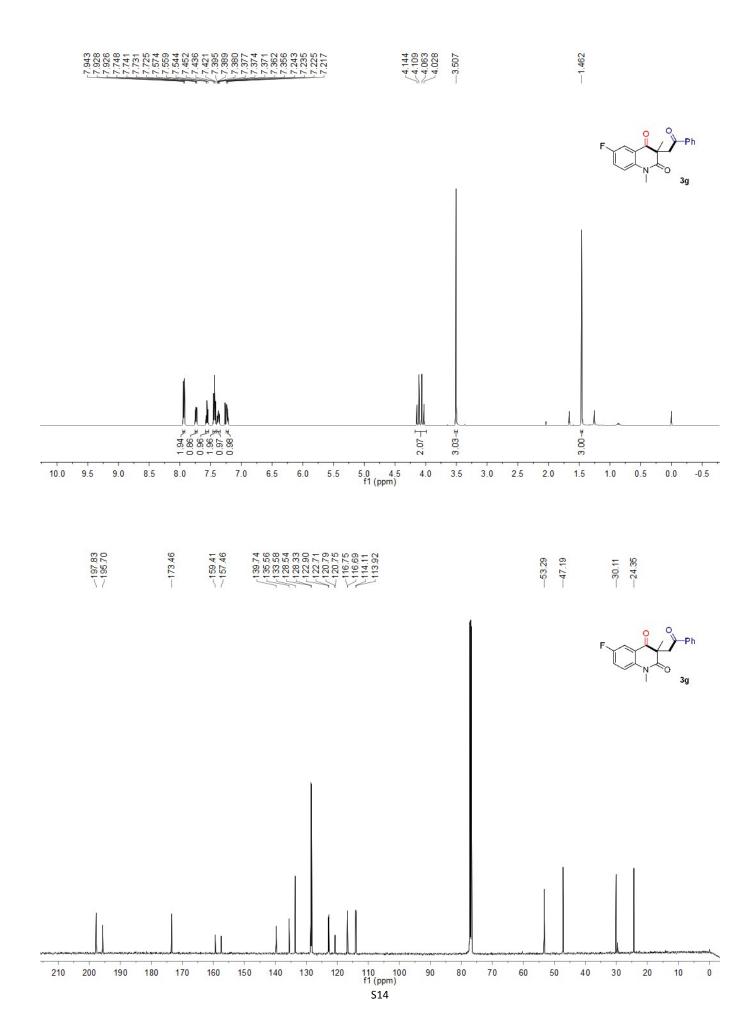

5. Charts of products

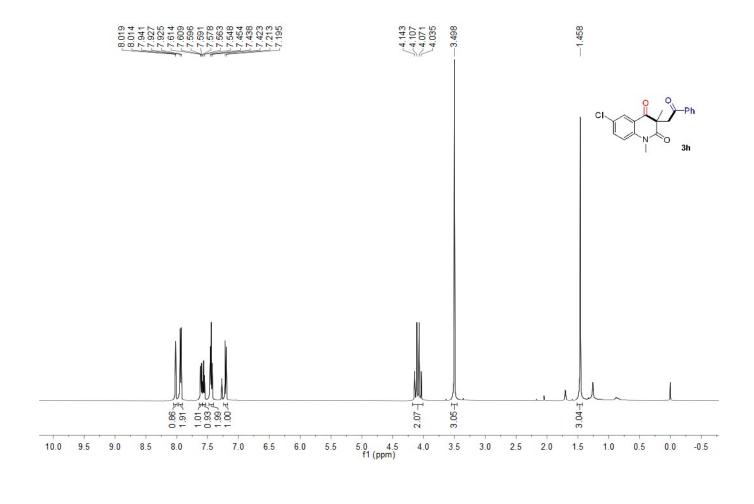
110.93 110.74 110.72 1109.33

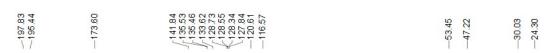

54.25

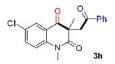

-30.63

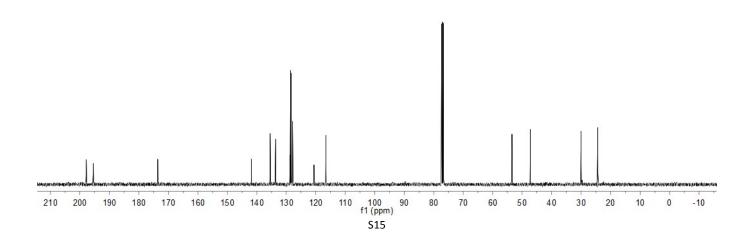

136.02 136.02 135.93 133.46 128.49

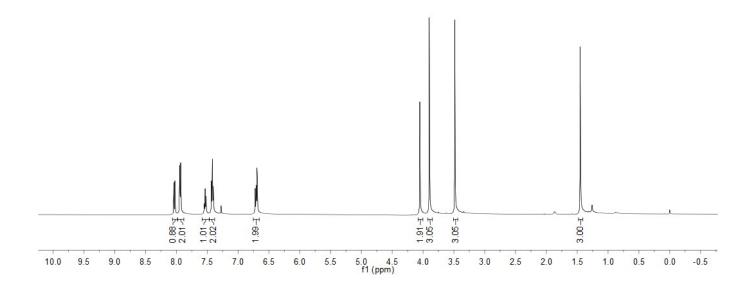

-173.39


-163.72 -161.61

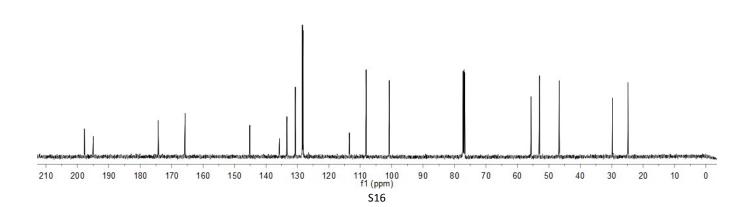


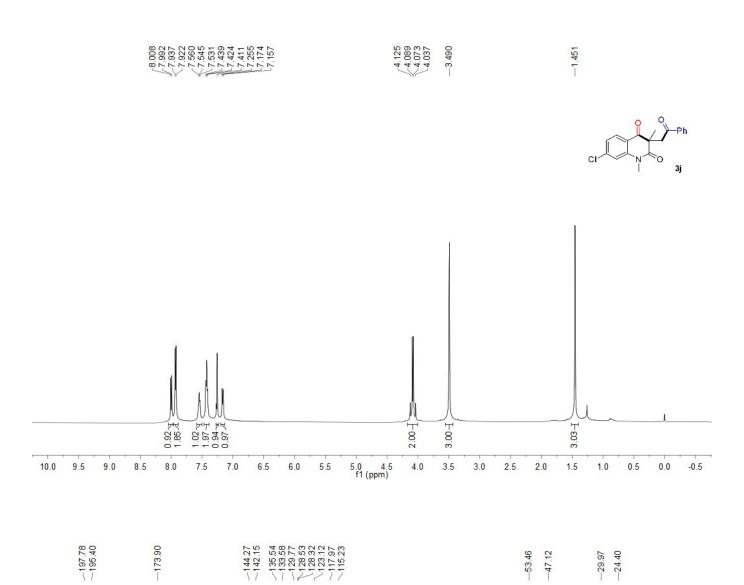

110 100 f1 (ppm) S12

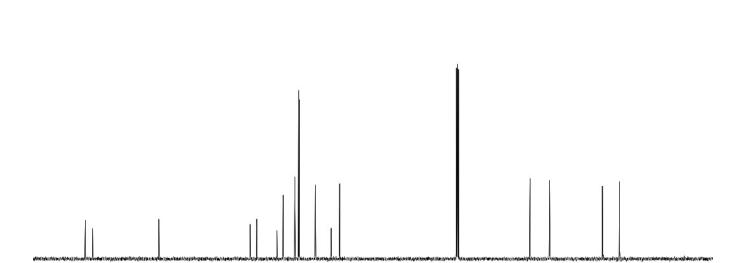




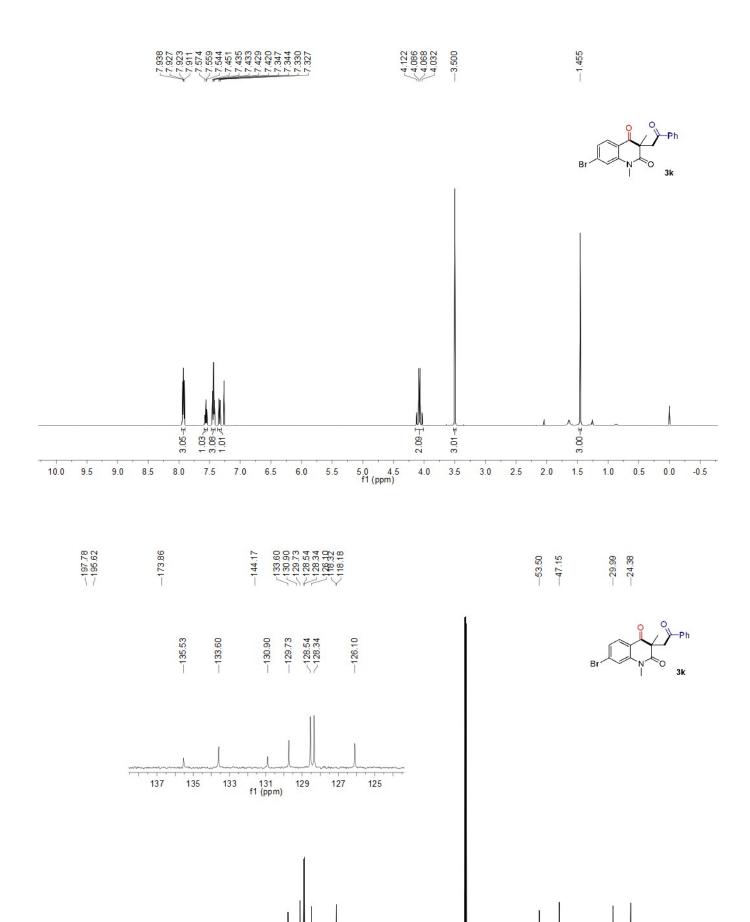
-4.052 -3.899 -3.484

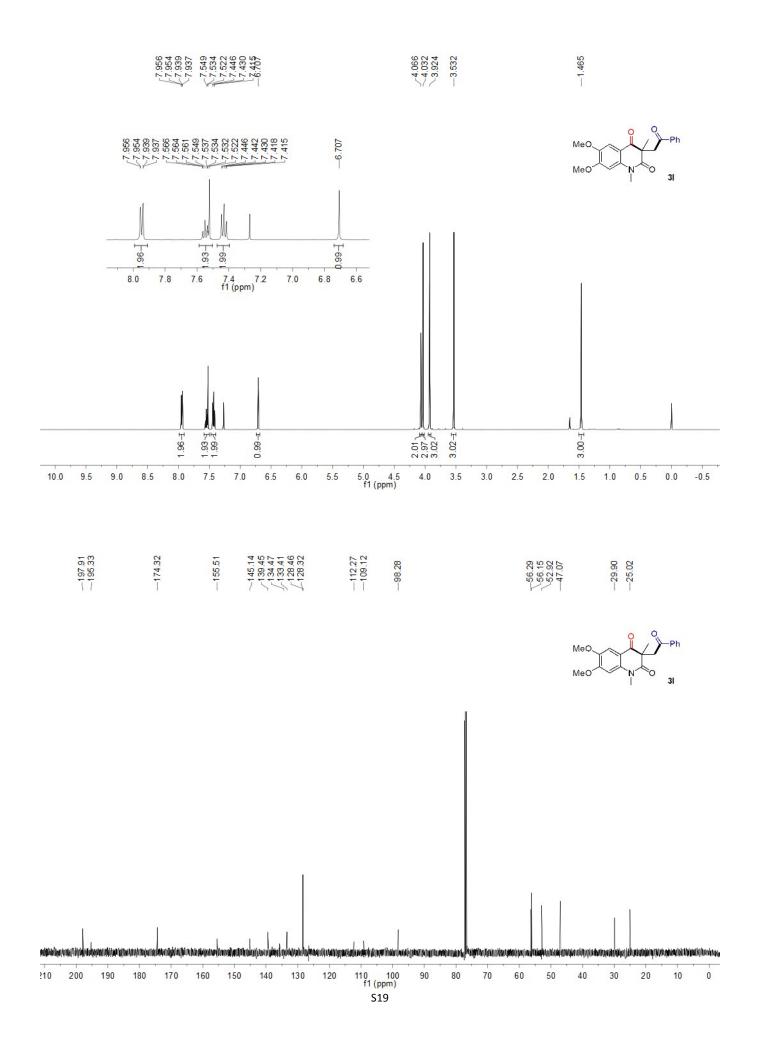

-1.452

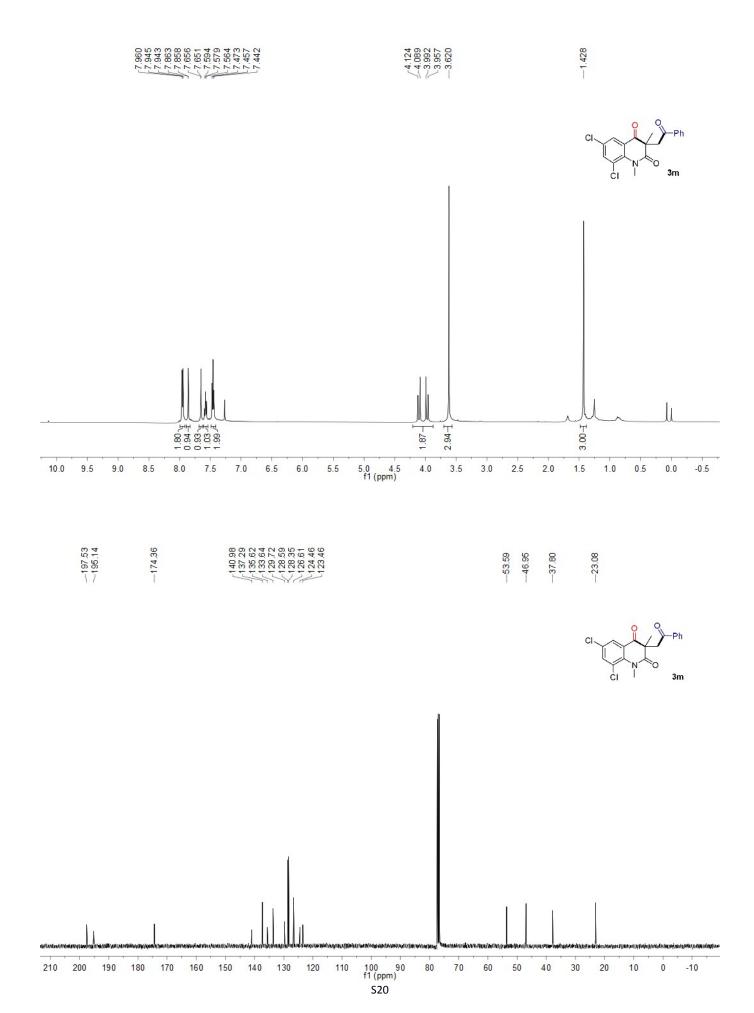


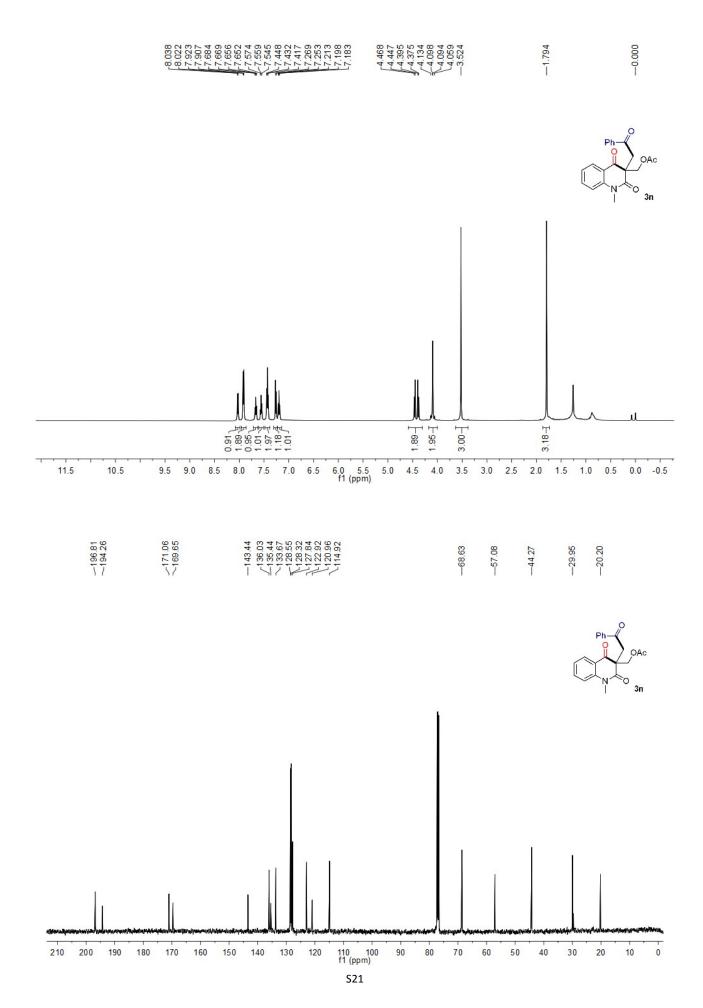


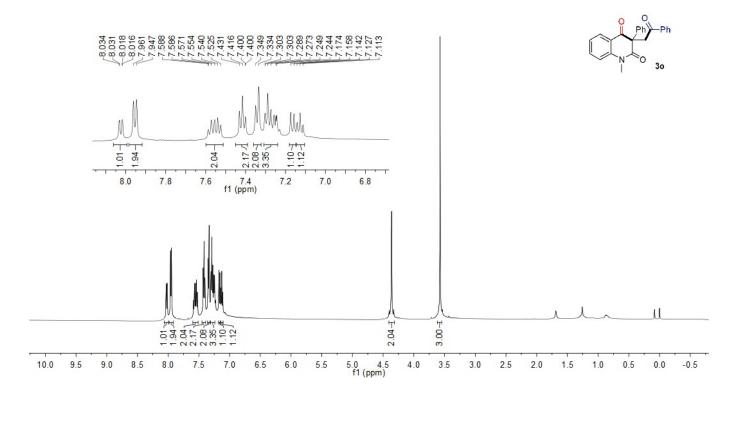
-197.76 --194.98 --174.30 --165.73 135.68 135.68 130.64 128.39

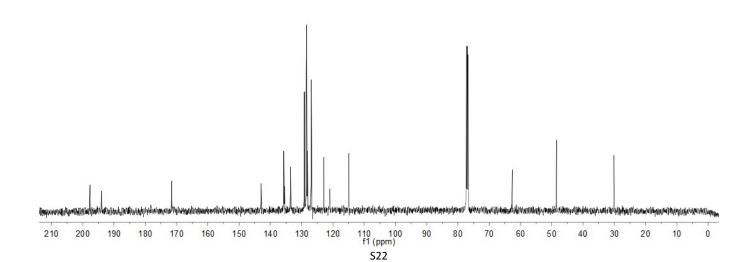

55.62 52.96 46.72 _29.73

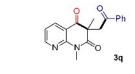


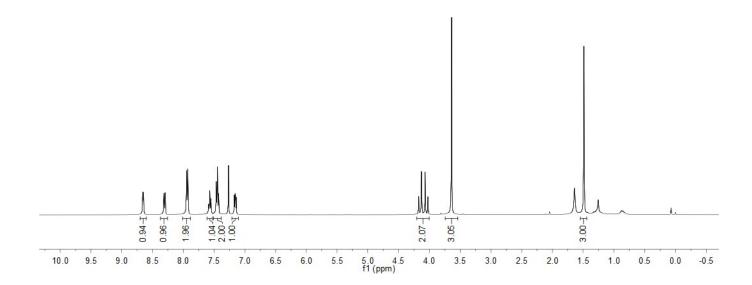


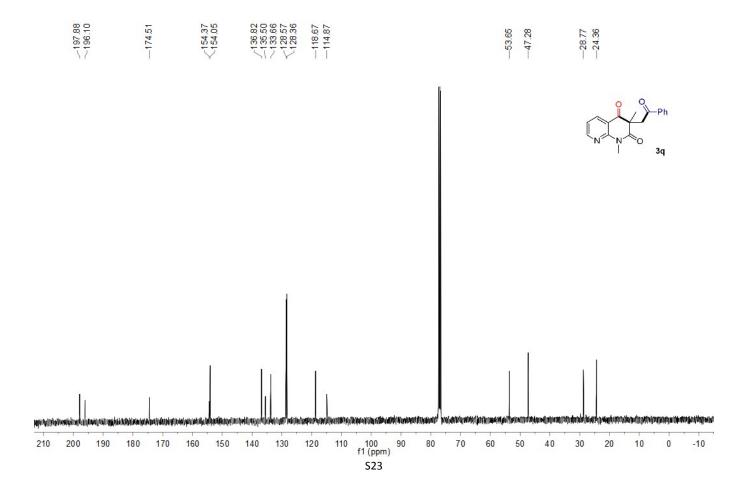

110 100 f1 (ppm) S17

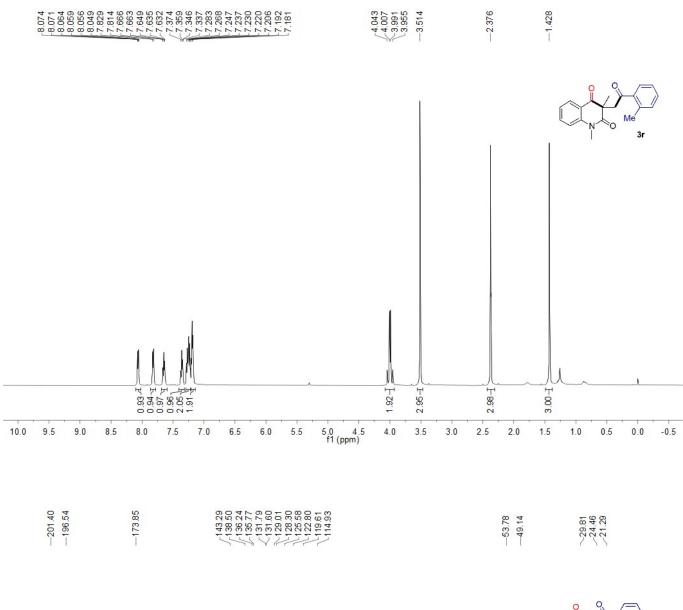

110 100 f1 (ppm) S18

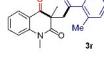


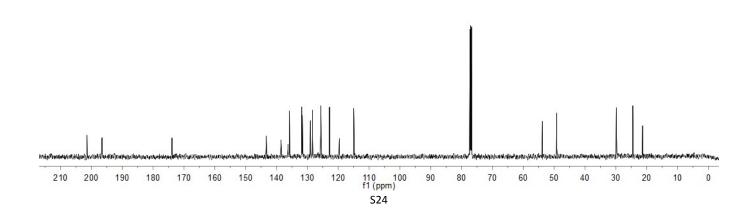




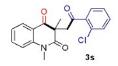


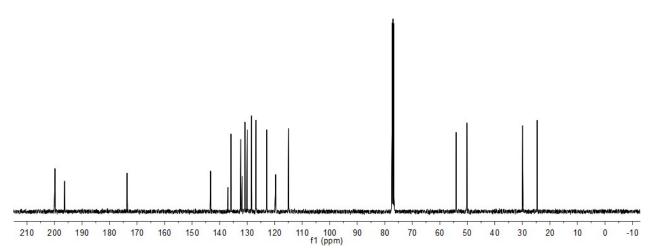


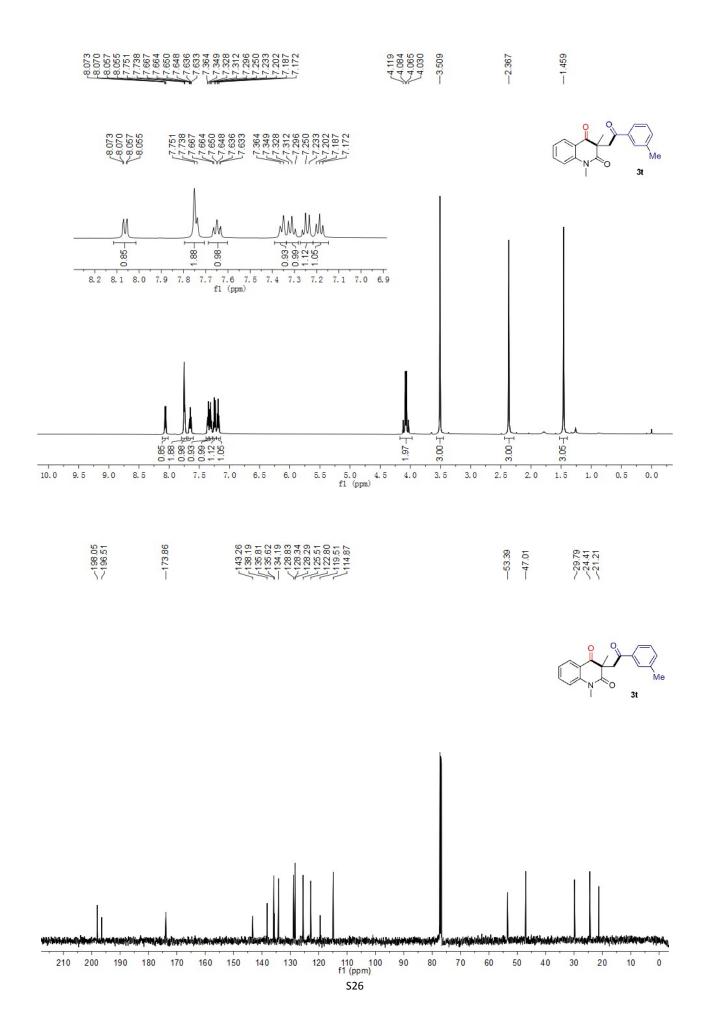


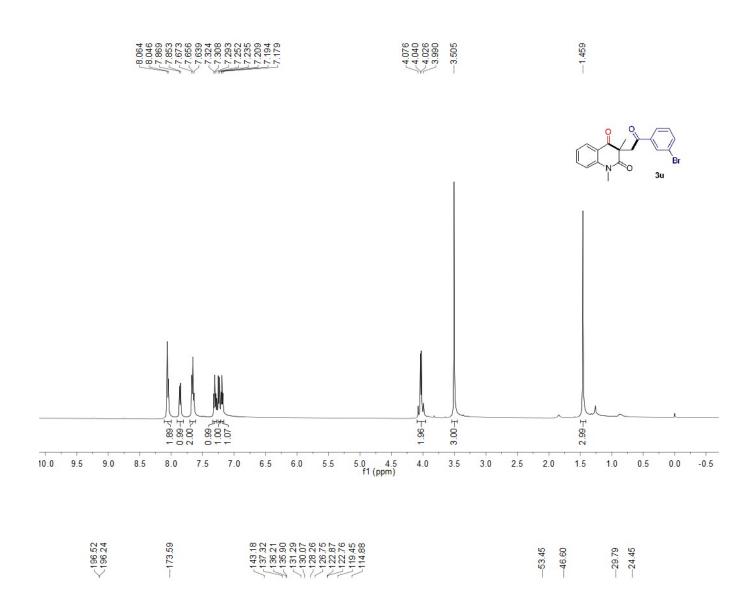


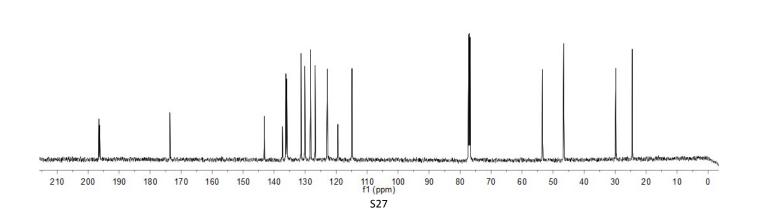


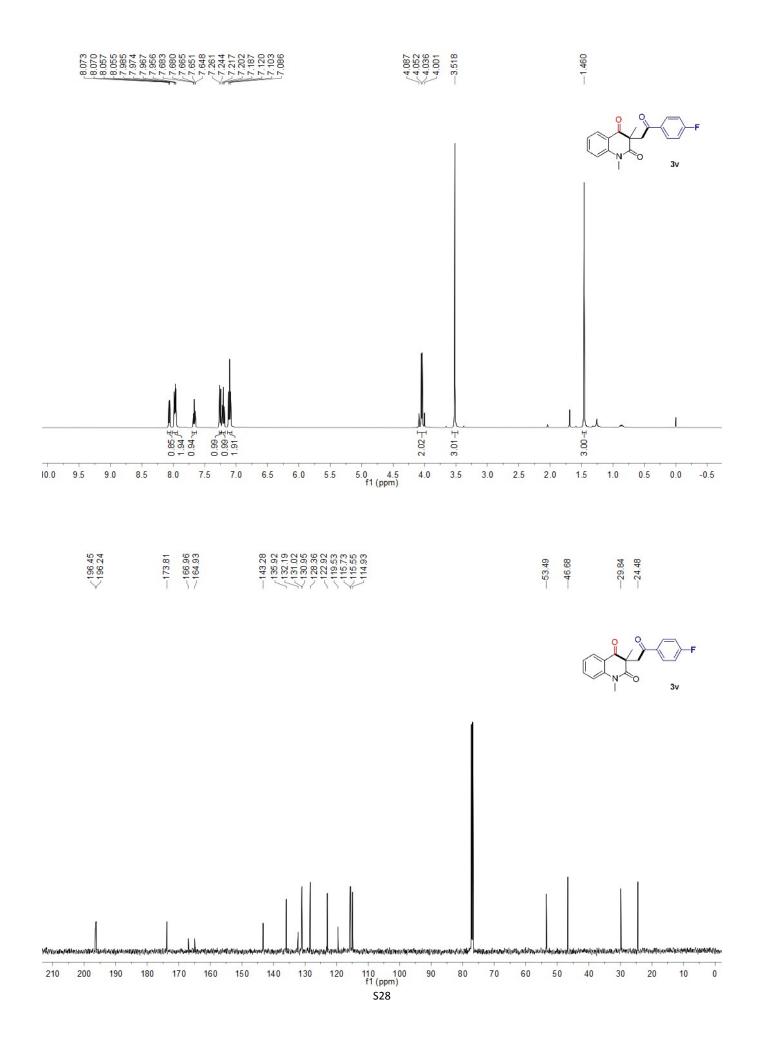


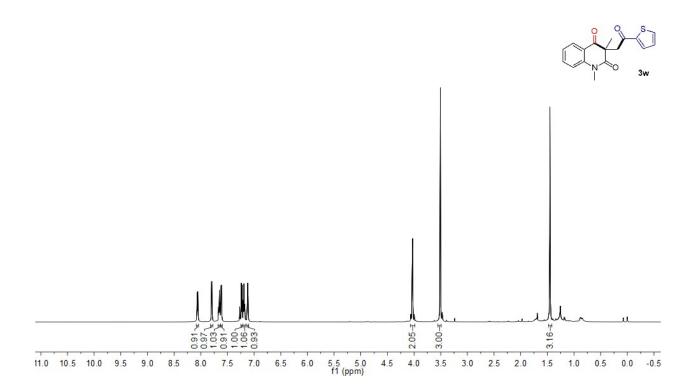


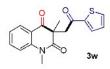


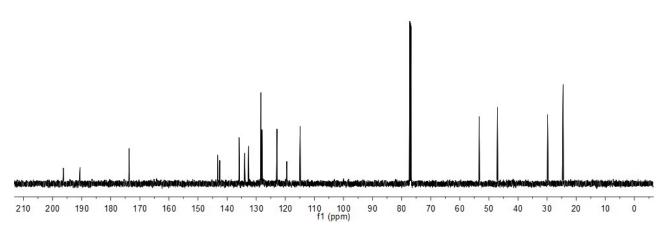


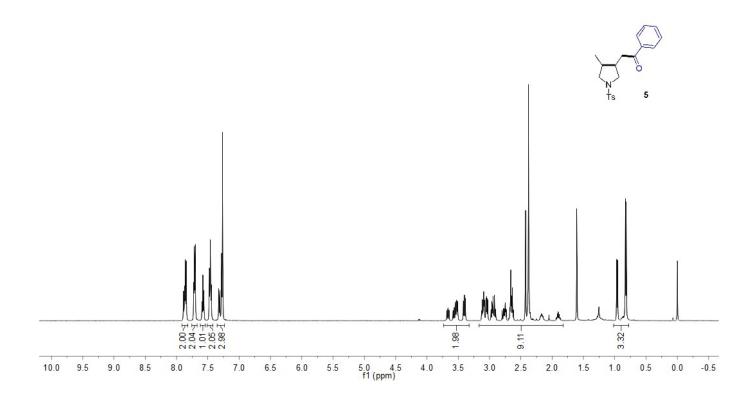

-199.79 -196.28 -196.28 -173.62 -136.95 -136.9

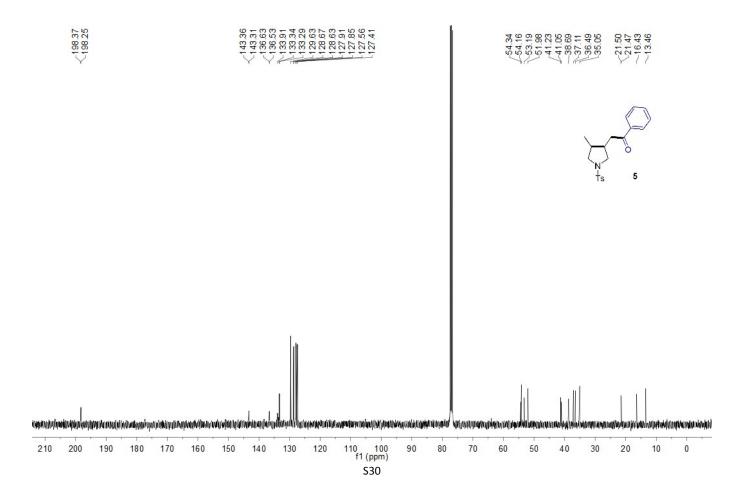












—196.30 —190.55 —173.70 -53.36 -47.09 -29.84 -24.50

