Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary materials

Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices of Rhenium(I) Carbonyls incorporating Functionalized 2,2':6',2''-terpyridines

Tomasz Klemens, Anna Świtlicka-Olszewska, Barbara Machura, Marzena Grucela, Henryk Janczek, Ewa Schab-Balcerzak, Agata Szlapa, Slawomir Kula, Stanisław Krompiec, Karolina Smolarek, Dorota Kowalska, Sebastian Mackowski, Karol Erfurt, Piotr Lodowski

Tables:	Page:
Table S1. Comparison of experimental and theoretical bond lengths [Å] and angles [°] for 1,3, 4 and 6.	3
Table S2 . Short intra- and intermolecular contacts detected in the structures of the tricarbonyl rhenium(I) complexes.	4
Table S3. Frontier molecular orbital composition (%) in the ground state for complex 1calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	5
Table S4. Frontier molecular orbital composition (%) in the ground state for complex 2calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	5
Table S5. Frontier molecular orbital composition (%) in the ground state for complex 3 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	5
Table S6. Frontier molecular orbital composition (%) in the ground state for complex 4 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	6
Table S7. Frontier molecular orbital composition (%) in the ground state for complex 5 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	6
Table S8. Frontier molecular orbital composition (%) in the ground state for complex 6 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.	6
Table S9. Frontier molecular orbital composition (%) in the ground state for complexes 2, 3,and 6 calculated at the DFT/B3LYP level using different basis sets.	7
Table S10. Main contributions to frontier molecular orbitals (%) in the ground state for complexes 2 , 3 , and 6 calculated at the DFT/B3LYP/TZ2P level using ADF software with ZORA relativistic approximation and COSMO solvent model.	7
Table S11 . The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.	8
Table S12 . The energies and characters of the selected spin-allowed electronic transitions for 2 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.	9
Table S13 . The energies and characters of the selected spin-allowed electronic transitions for 3 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.	10
Table S14 . The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/B3LYP method, together with assignment to the experimental	10

absorption bands.

ubbolphon builds.	
Table S15 . The energies and characters of the selected spin-allowed electronic transitions for 5 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.	11
Table S16 . The energies and characters of the selected spin-allowed electronic transitions for 6 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.	12
Table S17. The energies and characters of the of two lowest vertical electronic transitions for6 complex obtained in TDDFT calculations with using different functionals.	13
Figures:	Page:
Figure S1 . A view of the crystal packing showing intermolecular π - π stacking interactions for 1 and 6 .	14
Figure S2 . DSC thermograms of compound 2 . T_c : crystallization temperature; T_m melting point temperature; T_g glass transition temperature.	15
Figure S3 . Molecular orbital energy level graph of complexes 2 , 3 and 6 at the DFT/B3LYP level using different basis sets.	16
Figure S4. Excitation and emission spectra together with PL lifetime curves for 1-6 in CHCl ₃ , MeCN, low-temperature MeOH:EtOH glass matrix and in solid state.	17-22
Figure S5 . Isodensity surface plots of the HSOMO and LSOMO for the complexes $1-6$ at their T ₁ state geometry calculated in MeCN medium at the TD-DFT/DFT/B3LYP level associated with the PCM model. Blue and grey colours show regions of positive and negative spin density values, respectively.	23-24

Figure S6. AFM images (10 μ m x 10 μ m) of the blend PVK with compound **3**.

24

Dond longths Eyn		Op	t	Bond angles	Exp.	Opt.	
Bond lengths	Exp.	$ $ S_0 $ $ T_1		1		S_0	T ₁
$\begin{array}{c} \text{Re}(1)-\text{C}(1) \\ \text{Re}(1)-\text{C}(2) \\ \text{Re}(1)-\text{C}(3) \\ \text{Re}(1)-\text{N}(1) \\ \text{Re}(1)-\text{N}(2) \\ \text{Re}(1)-\text{Cl}(1) \\ \text{C}(1)-\text{O}(1) \\ \text{C}(2)-\text{O}(2) \\ \text{C}(3)-\text{O}(3) \\ \text{Re}(2)-\text{C}(31) \\ \text{Re}(2)-\text{C}(32) \\ \text{Re}(2)-\text{C}(32) \\ \text{Re}(2)-\text{C}(33) \\ \text{Re}(2)-\text{N}(4) \\ \text{Re}(2)-\text{N}(5) \\ \text{Re}(2)-\text{Cl}(2) \\ \text{C}(31)-\text{O}(4) \\ \text{C}(32)-\text{O}(5) \\ \text{C}(33)-\text{O}(6) \\ \end{array}$	1.905(5) 1.899(5) 1.919(5) 2.160(3) 2.216(3) 2.4848(11) 1.154(5) 1.151(6) 1.121(5) 1.918(5) 1.881(5) 1.902(5) 2.164(3) 2.216(3) 2.4979(10) 1.150(5) 1.167(5) 1.144(5)	1.939 1.921 1.912 2.202 2.267 2.549 1.164 1.167 1.170	1.938 1.932 1.912 2.202 2.212 2.565 1.165 1.166 1.170	$\frac{1}{C(2)-Re(1)-C(1)}$ $C(3)-Re(1)-C(1)$ $C(3)-Re(1)-C(2)$ $C(1)-Re(1)-N(1)$ $C(2)-Re(1)-N(1)$ $C(3)-Re(1)-N(2)$ $C(2)-Re(1)-N(2)$ $C(3)-Re(1)-N(2)$ $C(3)-Re(1)-N(2)$ $C(1)-Re(1)-N(2)$ $C(1)-Re(1)-Cl(1)$ $C(2)-Re(1)-Cl(1)$ $C(3)-Re(1)-Cl(1)$ $C(3)-Re(2)-C(31)$ $C(3)-Re(2)-C(31)$ $C(3)-Re(2)-C(32)$ $C(31)-Re(2)-N(4)$ $C(31)-Re(2)-N(4)$ $C(31)-Re(2)-N(5)$ $C(31)-Re(2)-N(5)$ $C(31)-Re(2)-Cl(2)$ $N(4)-Re(2)-Cl(2)$ $C(33)-Re(2)-Cl(2)$ $N(4)-Re(2)-Cl(2)$ $N(4)-Re(2)-Cl$	$\begin{array}{r} 87.02(17)\\ 90.82(19)\\ 90.18(18)\\ 174.37(15)\\ 95.86(15)\\ 94.00(15)\\ 101.97(14)\\ 168.64(14)\\ 96.55(14)\\ 74.61(11)\\ 89.59(14)\\ 91.12(14)\\ 178.65(12)\\ 85.53(8)\\ 82.11(8)\\ 86.97(17)\\ 87.85(18)\\ 89.47(19)\\ 175.63(15)\\ 95.79(15)\\ 95.54(15)\\ 102.37(14)\\ 168.94(14)\\ 96.70(15)\\ 74.54(11)\\ 92.92(13)\\ 92.51(15)\\ 177.90(13)\\ 83.60(8)\\ 81.23(8)\\ \end{array}$	86.82 91.11 89.85 174.51 96.79 93.02 101.71 169.35 96.28 74.25 91.13 91.27 177.55 84.68 82.29	87.24 90.83 89.64 174.68 96.45 93.02 100.88 169.41 96.98 75.02 91.26 89.56 177.71 84.94 83.51
Re(1)-C(1) Re(1)-C(2) Re(1)-C(3) Re(1)-N(1) Re(1)-N(2) Re(1)-Cl(1) C(1)-O(1) C(2)-O(2) C(3)-O(3)	1.929(8) 1.898(7) 1.969(8) 2.174(5) 2.231(5) 2.4650(18) 1.156(8) 1.156(8) 1.065(8)	1.937 1.919 1.915 2.202 2.265 2.552 1.164 1.168 1.169	1.977 1.982 1.986 2.161 2.143 2.470 1.156 1.157 1.153	$\begin{array}{c} C(2)-Re(1)-C(1)\\ C(3)-Re(1)-C(1)\\ C(3)-Re(1)-C(2)\\ C(1)-Re(1)-N(1)\\ C(2)-Re(1)-N(1)\\ C(3)-Re(1)-N(1)\\ C(1)-Re(1)-N(2)\\ C(2)-Re(1)-N(2)\\ C(3)-Re(1)-N(2)\\ C(1)-Re(1)-N(2)\\ C(1)-Re(1)-Cl(1)\\ C(2)-Re(1)-Cl(1)\\ C(3)-Re(1)-Cl(1)\\ N(1)-Re(1)-Cl(1)\\ N(2)-Re(1)-Cl(1)\\ N(2)-Re(1)-Cl(1)\\ \end{array}$	86.5(3) 93.7(3) 90.7(3) 175.3(2) 95.1(2) 90.7(3) 103.2(2) 169.5(2) 92.7(2) 74.97(19) 91.0(2) 90.5(2) 175.2(2) 84.62(14) 85.39(13)	86.78 90.52 90.18 174.86 96.40 93.50 102.23 169.34 95.39 74.24 91.23 91.82 177.41 84.64 82.38	82.66 98.53 86.98 172.70 99.78 88.49 101.06 175.24 95.34 76.16 89.04 88.56 170.65 84.17 88.54
$\begin{array}{c} \text{Re}(1)-\text{C}(1) \\ \text{Re}(1)-\text{C}(2) \\ \text{Re}(1)-\text{C}(3) \\ \text{Re}(1)-\text{N}(1) \\ \text{Re}(1)-\text{N}(2) \\ \text{Re}(1)-\text{Cl}(1) \\ \text{C}(1)-\text{Cl}(1) \\ \text{C}(2)-\text{O}(2) \\ \text{C}(3)-\text{O}(3) \end{array}$	1.919(9) 1.894(8) 1.950(9) 2.164(6) 2.227(6) 2.459(2) 1.163(9) 1.162(9) 1.063(10)	1.937 1.919 1.915 2.202 2.265 2.552 1.164 1.168 1.169	1.977 1.982 1.986 2.161 2.143 2.470 1.156 1.157 1.153	$\begin{array}{c} C(2)-Re(1)-C(1)\\ C(3)-Re(1)-C(1)\\ C(3)-Re(1)-C(2)\\ C(1)-Re(1)-N(1)\\ C(2)-Re(1)-N(1)\\ C(3)-Re(1)-N(1)\\ C(1)-Re(1)-N(2)\\ C(2)-Re(1)-N(2)\\ C(3)-Re(1)-N(2)\\ C(3)-Re(1)-N(2)\\ C(1)-Re(1)-N(2)\\ C(1)-Re(1)-Cl(1)\\ C(2)-Re(1)-Cl(1)\\ C(2)-Re(1)-Cl(1)\\ \end{array}$	86.5(3) 93.4(4) 91.0(3) 175.1(3) 95.3(3) 91.1(3) 102.9(3) 169.7(3) 92.5(3) 75.0(2) 91.0(2) 90.7(3)	86.76 90.52 90.19 174.86 96.42 93.49 102.22 169.35 95.38 74.24 91.26 91.82	82.66 98.56 86.96 172.66 99.80 88.51 101.06 175.20 95.42 76.14 89.02 88.53

 Table S1. Comparison of experimental and theoretical bond lengths [Å] and angles [°] for 1, 3, 4 and 6.

				C(3)-Re(1)-Cl(1)	175.4(3)	177.38	170.61					
				N(1)-Re(1)-Cl(1)	84.45(16)	84.62	84.15					
				N(2)-Re(1)-Cl(1)	85.13(15)	82.37	88.51					
	6											
Re(1)-C(1)	1.925(8)	1.939	1.938	C(2)-Re(1)-C(1)	87.9(3)	86.83	86.96					
Re(1)-C(2)	1.922(7)	1.921	1.929	C(3)-Re(1)-C(1)	88.5(3)	91.05	91.02					
Re(1)-C(3)	1.884(8)	1.912	1.905	C(3)-Re(1)-C(2)	88.6(3)	89.86	89.62					
Re(1) - N(1)	2.173(6)	2.203	2.191	C(1)-Re(1)-N(1)	175.2(3)	174.57	174.39					
Re(1)-N(2)	2.200(5)	2.262	2.210	C(2)-Re(1)-N(1)	96.1(3)	96.76	96.11					
Re(1)-Cl(1)	2.4995(17)	2.552	2.590	C(3)-Re(1)-N(1)	94.1(3)	93.02	93.70					
C(1)-O(1)	1.159(9)	1.164	1.167	C(1)-Re(1)-N(2)	101.7(2)	101.73	101.14					
C(2)–O(2)	1.130(8)	1.167	1.169	C(2)-Re(1)-N(2)	168.4(2)	169.36	169.56					
C(3)–O(3)	1.167(9)	1.170	1.173	C(3)-Re(1)-N(2)	98.1(3)	96.22	96.75					
				N(1)-Re(1)-N(2)	74.03(19)	74.27	75.30					
				C(1)-Re(1)-Cl(1)	93.6(2)	91.16	90.62					
				C(2)-Re(1)-Cl(1)	91.8(2)	91.14	89.75					
				C(3)-Re(1)-Cl(1)	177.8(2)	177.63	178.21					
				N(1)-Re(1)-Cl(1)	83.71(14)	84.72	84.70					
				N(2)-Re(1)-Cl(1)	81.12(13)	82.47	83.63					

Table S2. Short intra- and intermolecular contacts detected in the structures of the rhenium(I) complexes.

D—H•••A	D—H	Н•••А	D•••A	D—H•••A	
			[Å]	[°]	
		1			
C(7)–H(7)•••Cl(2)#1	0.93	2.72	3.599(3)	158.00	
C(37)–H(37)•••Cl(1)#2	0.93	2.71	3.593(3)	158.00	
C(50)-H(50)•••Cl(1)#2	0.93	2.82	3.668(4)	153.00	
C(57)–H(57)•••O(1)#3	0.93	2.50	3.344(6)	151.00	
C(60)-H(60)•••Cl(2)#3	0.93	2.68	3.582(5)	163.00	
		3			
C(7)–H(7)•••Cl(1)#4	0.93	2.76	3.602(8)	151.00	
C(17)–H(17)••• Cl(1)#1	0.93	2.76	3.534(8)	142.00	
	·	4			
C(7)–H(7)•••Cl(1)#5	0.93	2.77	3.609(8)	151.00	
C(17)–H(17)••• Cl(1)#1	0.93	2.77	3.541(9)	141.00	
C(20)–H(20)••• Cl(1)#5	0.93	2.82	3.728(10)	165.00	

Symmetry codes: #1: -1+x,y,z; #2: 1+x,y,z; #3: 2-x,1-y,1-z; #4: x,1/2-y,-1/2+z; #5: x,3/2-y,-1/2+z

Table S3. Frontier molecular orbital composition (%) in the ground state for complex 1 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Con	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.99	30.36	28.97	2.66	15.89	22.13	$d(Re) + \pi^{*}(CO) + \pi^{*}(terpy) + \pi^{*}(R)$
LUMO+4	-1.03	11.90	26.99	6.99	8.07	46.06	$d(Re) + \pi^*(CO) + \pi^*(terpy)$
LUMO+3	-1.27	14.41	12.70	0.49	10.23	62.17	$\pi^{*}(\text{terpy}) + d(\text{Re}) + \pi^{*}(\text{CO}) + \pi^{*}(\text{R})$
LUMO+2	-1.56	13.18	4.99	2.07	4.52	75.24	$\pi^*(\text{terpy}) + d(\text{Re})$
LUMO+1	-1.96	2.69	1.60	0.60	14.53	80.58	$\pi^*(\text{terpy}) + \pi^*(R)$
LUMO	-2.64	10.86	3.51	2.76	8.24	74.63	$\pi^*(\text{terpy}) + d(\text{Re})$
HOMO	-6.23	16.17	9.46	5.66	57.11	11.61	$\pi(R) + d(Re)$
HOMO-1	-6.33	41.31	23.91	21.28	6.68	6.82	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.48	32.47	19.65	22.99	18.54	6.35	$d(Re) + \pi(CO) + p(Cl) + \pi(R)$
HOMO-3	-6.75	54.28	30.95	1.57	0.16	13.04	$d(Re) + \pi(CO)$
HOMO-4	-6.97	0.01	0.00	0.00	99.93	0.06	$\pi(R)$
HOMO-5	-7.12	3.25	2.72	0.12	4.17	89.74	π (terpy)

Table S4. Frontier molecular orbital composition (%) in the ground state for complex **2** calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Con	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-1.01	31.23	31.60	0.87	7.34	28.95	$d(Re) + \pi^*(CO) + \pi^*(terpy)$
LUMO+4	-1.04	9.75	15.79	5.34	10.72	58.40	$\pi^{*}(\text{terpy}) + \pi^{*}(\text{CO}) + \pi^{*}(\text{R})$
LUMO+3	-1.26	8.37	3.72	0.30	37.28	50.33	$\pi^*(\text{terpy}) + \pi^*(\mathbf{R})$
LUMO+2	-1.52	7.89	4.27	1.65	4.68	81.51	$\pi^*(\text{terpy})$
LUMO+1	-1.89	1.12	1.19	0.45	15.00	82.24	$\pi^*(\text{terpy}) + \pi^*(\mathbf{R})$
LUMO	-2.59	13.75	3.43	3.11	5.76	73.95	$\pi^*(\text{terpy}) + d(\text{Re})$
HOMO	-5.80	1.86	1.23	0.40	84.97	11.54	$\pi(R) + \pi(terpy)$
HOMO-1	-6.25	44.24	26.70	21.87	0.64	6.54	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.39	41.91	24.58	24.15	2.52	6.83	$d(Re) + \pi(CO) + p(Cl)$
HOMO-3	-6.71	56.57	32.17	1.59	0.04	9.63	$d(Re) + \pi(CO)$
HOMO-4	-6.95	0.56	0.03	0.01	97.51	1.89	$\pi(\mathbf{R})$
HOMO-5	-7.11	1.31	1.38	0.25	2.29	94.77	π (terpy)

Table S5. Frontier molecular orbital composition (%) in the ground state for complex **3** calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Con	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.92	30.06	34.32	6.59	7.81	21.22	$d(Re) + \pi^*(CO) + \pi^*(terpy)$
LUMO+4	-1.04	23.95	23.84	2.49	0.99	48.74	$\pi^*(\text{terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
LUMO+3	-1.21	11.06	8.46	0.89	9.08	70.52	$\pi^*(\text{terpy}) + d(\text{Re})$
LUMO+2	-1.54	9.25	4.43	1.84	3.34	81.13	$\pi^*(\text{terpy})$
LUMO+1	-1.97	0.99	1.18	0.38	13.86	83.59	$\pi^*(\text{terpy}) + \pi^*(\mathbf{R})$
LUMO	-2.67	10.92	3.44	2.95	7.96	74.74	$\pi^*(\text{terpy}) + d(\text{Re})$
HOMO	-6.25	44.13	26.90	21.70	0.57	6.70	$d(Re) + \pi(CO) + p(Cl)$
HOMO-1	-6.38	42.20	24.37	21.69	3.74	7.99	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.72	56.31	31.85	1.73	0.24	9.87	$d(Re) + \pi(CO)$
HOMO-3	-6.95	2.08	0.91	6.85	72.77	17.39	$\pi(R) + \pi(terpy)$
HOMO-4	-7.16	1.13	1.44	0.26	1.29	95.87	π (terpy)
HOMO-5	-7.50	1.04	0.05	0.03	94.89	3.98	π(R)

Table S6. Frontier molecular orbital composition (%) in the ground state for complex 4 calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Con	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.92	29.91	34.31	6.39	8.22	21.16	$d(Re) + \pi^*(CO) + \pi^*(terpy)$
LUMO+4	-1.04	23.71	23.66	2.57	1.06	48.99	$\pi^*(\text{terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
LUMO+3	-1.21	10.93	8.10	0.83	9.51	70.63	$\pi^*(\text{terpy}) + d(\text{Re})$
LUMO+2	-1.55	9.20	4.43	1.85	3.46	81.06	$\pi^*(\text{terpy})$
LUMO+1	-1.98	0.99	1.18	0.37	14.08	83.38	$\pi^*(\text{terpy}) + \pi^*(\mathbf{R})$
LUMO	-2.68	10.94	3.43	2.95	8.03	74.66	$\pi^*(\text{terpy}) + d(\text{Re})$
HOMO	-6.26	44.11	26.89	21.71	0.61	6.69	$d(Re) + \pi(CO) + p(Cl)$
HOMO-1	-6.38	42.03	24.26	21.60	4.13	7.98	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.72	56.22	31.80	1.75	0.36	9.87	$d(Re) + \pi(CO)$
HOMO-3	-6.90	2.26	1.05	6.01	75.72	14.95	$\pi(\mathbf{R}) + \pi(\text{terpy})$
HOMO-4	-7.16	1.13	1.45	0.26	1.25	95.91	π (terpy)
HOMO-5	-7.51	1.04	0.05	0.03	94.91	3.96	π(R)

Table S7. Frontier molecular orbital composition (%) in the ground state for complex **5** calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Con	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.92	32.97	28.48	6.17	12.38	20.00	$d(Re) + \pi^{*}(CO) + \pi^{*}(terpy) + \pi^{*}(R)$
LUMO+4	-1.04	24.86	25.10	2.19	0.49	47.36	$\pi^*(\text{terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
LUMO+3	-1.20	12.49	8.51	0.99	8.80	69.21	$\pi^*(\text{terpy}) + d(\text{Re})$
LUMO+2	-1.55	8.12	4.41	1.79	2.55	83.14	$\pi^*(\text{terpy})$
LUMO+1	-1.98	1.10	1.19	0.31	11.04	86.37	$\pi^*(\text{terpy}) + \pi^*(\mathbf{R})$
LUMO	-2.69	12.61	3.32	2.99	7.07	74.01	$\pi^*(\text{terpy}) + d(\text{Re})$
HOMO	-6.26	44.27	26.86	21.94	0.31	6.61	$d(Re) + \pi(CO) + p(Cl)$
HOMO-1	-6.39	42.73	24.82	22.93	2.10	7.42	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.73	56.52	31.93	1.58	0.06	9.91	$d(\text{Re}) + \pi(\text{CO})$
HOMO-3	-7.14	1.03	0.40	7.72	69.38	21.47	$\pi(\mathbf{R}) + \pi(\text{terpy})$
HOMO-4	-7.18	1.18	1.41	0.59	3.57	93.25	π (terpy)
HOMO-5	-7.56	1.15	0.36	3.68	68.22	26.59	$\pi(R) + \pi(terpy)$

Table S8. Frontier molecular orbital composition (%) in the ground state for complex **6** calculated at the DFT/B3LYP/DEF2-TZVPD/6-31+G* level.

Orbital	Energy		Cont	ribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.77	16.55	25.25	2.86	0.31	55.03	$\pi^*(\text{terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
LUMO+4	-0.99	21.71	36.99	8.47	0.20	32.63	$d(Re) + \pi^*(CO) + \pi^*(terpy)$
LUMO+3	-1.18	22.53	19.23	0.84	2.43	54.98	$\pi^*(\text{terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
LUMO+2	-1.49	12.87	4.70	1.81	2.16	78.45	$\pi^*(\text{terpy}) + d(\text{Re})$
LUMO+1	-1.80	3.59	1.80	0.82	10.48	83.31	$\pi^*(\text{terpy}) + \pi^*(R)$
LUMO	-2.51	9.98	3.78	2.79	7.33	76.12	$\pi^*(\text{terpy})$
HOMO	-5.41	3.87	0.92	0.39	81.84	12.98	$\pi(R) + \pi(terpy)$
HOMO-1	-6.29	43.67	26.86	22.73	0.40	6.34	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.42	41.60	24.49	24.50	2.31	7.09	$d(Re) + \pi(CO) + p(Cl)$
HOMO-3	-6.72	54.00	30.89	1.59	0.10	13.42	$d(Re) + \pi(CO)$
HOMO-4	-7.02	3.27	2.48	0.11	16.69	77.45	$\pi(\text{terpy}) + \pi(R)$
HOMO-5	-7.11	0.86	0.55	0.04	77.52	21.03	$\pi(R) + \pi(terpy)$

Compound	Basis Set	Orbital	Energy		Cor	ntribution (%)		Character
			[eV]	Re	3CO	Cl	R	terpy	
	1.00 T710D/	LUMO	-2.59	13.75	3.43	3.11	5.76	73.95	$\pi^*(\text{terpy}) + d(\text{Re})$
	def2-1ZVPD/	HOMO	-5.80	1.86	1.23	0.40	84.97	11.54	$\pi(R) + \pi(terpy)$
	0-31+g.	HOMO-1	-6.25	44.24	26.70	21.87	0.64	6.54	$d(Re) + \pi(CO) + p(Cl)$
		LUMO	-2.71	2.68	1.86	0.73	9.87	84.86	$\pi^*(\text{terpy})$
2		HOMO	-6.01	4.34	2.68	0.61	54.16	38.21	$\pi(R) + \pi(terpy)$
2		HOMO-1	-6.21	38.06	22.51	11.20	9.20	19.03	$d(Re) + \pi(CO) + p(Cl) +$
									$\pi(terpy)$
		LUMO	-2.70	7.72	9.57	0.92	6.47	75.32	$\pi^*(\text{terpy})$
	def2TZVPD	НОМО	-5.99	4.83	3.05	0.80	72.50	18.83	$\pi(R) + \pi(terpy)$
		HOMO-1	-6.21	49.19	25.13	16.62	2.05	7.02	$d(Re) + \pi(CO) + p(Cl)$
				Re	3CO	Cl	R	terpy	
	dof TTVDD/	LUMO	-2.67	10.92	3.44	2.95	7.96	74.74	$\pi^*(\text{terpy}) + d(\text{Re})$
	$6-31+\sigma^*$	HOMO	-6.25	44.13	26.90	21.70	0.57	6.70	$d(Re) + \pi(CO) + p(Cl)$
	0-31+g	HOMO-1	-6.38	42.20	24.37	21.69	3.74	7.99	$d(Re) + \pi(CO) + p(Cl)$
		LUMO	-2.79	2.69	1.84	0.67	8.75	86.05	$\pi^*(\text{terpy})$
		HOMO	-6.21	43.44	26.56	12.48	1.14	16.38	$d(Re) + \pi(CO) + p(Cl) +$
3	TZVP								π(terpy)
		HOMO-1	-6.34	44.32	19.56	14.93	2.99	18.19	$d(Re) + \pi(CO) + p(Cl) +$
									π(terpy)
		LUMO	-2.78	6.28	7.63	0.90	7.66	77.54	$\pi^*(\text{terpy})$
	def2TZVPD	HOMO	-6.21	50.39	26.08	16.51	0.37	6.65	$d(Re) + \pi(CO) + p(Cl)$
		HOMO-1	-6.34	45.85	23.78	18.64	2.33	9.40	$d(Re) + \pi(CO) + p(Cl)$
				Re	3CO	Cl	R	terpy	
	def2-TZVPD/	LUMO	-2.51	9.98	3.78	2.79	7.33	76.12	$\pi^*(\text{terpy})$
	6-31+g*	НОМО	-5.41	3.87	0.92	0.39	81.84	12.98	$\pi(R) + \pi(terpy)$
		HOMO-1	-6.29	43.67	26.86	22.73	0.40	6.34	$d(Re) + \pi(CO) + p(CI)$
		LUMO	-2.63	2.06	1.48	0.57	15.09	80.81	$\pi^*(\text{terpy}) + \pi^*(R)$
-	TZVP	НОМО	-5.57	1.72	1.11	0.17	49.49	47.51	$\pi(R) + \pi(terpy)$
6		HOMO-1	-6.24	40.40	24.97	11.88	2.63	20.13	$d(Re) + \pi(CO) + p(Cl) +$
				0.70	10.55			<	$\pi(\text{terpy})$
		LUMO	-2.63	8.50	10.66	0.91	12.44	67.50	$\pi^{*}(\text{terpy}) + \pi^{*}(R) + \pi^{*}(R)$
	def2TZVPD		5.57	2.05	1.42	0.24	01.22	14.95	$\pi^{(CO)}$
		HOMO	-5.57	2.05	1.43	0.34	81.33	14.85	$\frac{\pi(R) + \pi(terpy)}{\pi(R) + \pi(terpy)}$
		HOMO-I	-6.24	49.71	25.10	16.84	0.49	/.8/	$d(\text{Re}) + \pi(\text{CO}) + p(\text{CI})$

Table S9. Frontier molecular orbital composition (%) in the ground state for complexes **2**, **3**, and **6** calculated at the DFT/B3LYP level using different basis sets.

Table S10. Main contributions to frontier molecular orbitals (%) in the ground state for complexes **2**, **3**, and **6** calculated at the DFT/B3LYP/TZ2P level using ADF software with ZORA relativistic approximation and COSMO solvent model.

Compound	MO orbital	Energy [eV]	Main contribution
	LUMO	-2.82	π^{*}_{terpy} (91.84%)
2	HOMO	-6.08	$\pi_{\rm R}$ (81.92%)
	HOMO-1	-6.37	$d_{\text{Re}}(49.76\%) + \pi_{\text{CO}}(20.60\%) + p_{\text{Cl}}(18.56\%)$
	LUMO	-2.88	π^{*}_{terpy} (80.51%)
3	НОМО	-6.36	$d_{\text{Re}}(50.61\%) + \pi_{\text{CO}}(18.06\%) + p_{\text{CI}}(18.34\%)$
	HOMO-1	-6.49	$d_{Re} (46.43\%) + \pi_{CO} (18.22\%) + p_{Cl} (19.47\%)$
	LUMO	-2.74	π^{*}_{terpy} (86.41%)
6	HOMO	-5.63	$\pi_{\rm R} (83.94\%)$
	HOMO-1	-6.42	$d_{\text{Re}}(49.44\%) + \pi_{\text{CO}}(20.76\%) + p_{\text{CI}}(16.77\%)$

Table S11. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental		Calculated transitions				
absorption λ; nm (10 ⁻³ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E [eV]	λ [nm]	Oscillator strength	
383.9 (8.7)	$\text{H-1} \rightarrow \text{L} (65\%)$	MLCT/LLCT	2.93	422.66	0.0237	
	$H \rightarrow L (41\%)$	ILCT/IL	3.07	403.65	0.2998	
	$H-2 \rightarrow L (64\%)$	MLCT/LLCT/ILCT	3.31	375.02	0.2051	
	$H-3 \rightarrow L (91\%)$	MLCT	3.36	369.38	0.0157	
315.0 (37.9)	$H \rightarrow L+1 (52\%)$	ILCT	3.70	335.58	0.0933	
	$\text{H-5} \rightarrow \text{L} (64\%)$	ILCT	3.90	317.63	0.2001	
	$H-2 \rightarrow L+1 (72\%)$	MLCT/LLCT	3.95	313.75	0.2063	
	$H-1 \rightarrow L+2 (30\%)$	MLCT/LLCT	4.02	308.36	0.0624	
	$H \rightarrow L+2 (23\%)$	ILCT				
278.6 (28.4)	$\text{H-9} \rightarrow \text{L} (25\%)$	IL/LLCT	4.39	282.34	0.1031	
	$\text{H-10} \rightarrow \text{L} (23\%)$	LLCT/IL				
	$H-3 \rightarrow L+2 (12\%)$	MLCT				
	$H-2 \rightarrow L+2 (26\%)$	MLCT/LLCT/ILCT	4.42	280.64	0.0606	
	$H-3 \rightarrow L+2 (24\%)$	MLCT				
	$H \rightarrow L+2 (19\%)$	ILCT				
	$H \rightarrow L+3 (36\%)$	ILCT	4.62	268.67	0.3036	
	$H-5 \rightarrow L+1 (13\%)$	IL/ILCT				
	$H-11 \rightarrow L (29\%)$	LLCT/ILCT/IL	4.65	266.58	0.0775	
	$H-5 \rightarrow L+1 (21\%)$	IL/ILCT				
	$H-11 \rightarrow L (33\%)$	LLCT/ILCT/IL	4.72	262.64	0.1188	
	$H-5 \rightarrow L+1 (12\%)$	IL/ILCT				
191.49 (126.9)	$H-15 \rightarrow L+1 (14\%)$	IL	6.22	199.42	0.0531	
	$\text{H-14} \rightarrow \text{L+1} (14\%)$	IL/ILCT				
	$H \to L+14 (15\%)$	LMCT/ILCT	6.31	196.57	0.0557	
	$H-2 \rightarrow L+15 (11\%)$	d-d/LLCT/ILCT				
	$H-6 \rightarrow L+7 (26\%)$	IL/ILCT	6.34	195.68	0.0405	
	$H-6 \rightarrow L+10 (19\%)$	IL				
	$H-10 \rightarrow L+6 (17\%)$	LLCT/IL	6.36	195.01	0.0411	
	H-5 \rightarrow L+9 (11%)	LLCT/IL	6.39	194.14	0.0489	
	$H-7 \rightarrow L+7 (45\%)$	LLCT/ILCT/IL	6.46	191.86	0.0446	

E-manine antal also a miti- m	Calculated transitions					
Experimental absorption λ ; nm	Major contribution (%)	Character	E [eV]	λ[nm]	Oscillator	
$(10^{-3} \varepsilon; M^{-1} cm^{-1})$			2[01]		strength	
374.0 (42.3)	$H \rightarrow L (97\%)$	ILCT/IL	2.74	453.34	0.1923	
	$H-2 \rightarrow L (97\%)$	MLCT/LLCT	3.14	395.29	0.0391	
	$H \rightarrow L+1 (98\%)$	ILCT	3.38	366.88	0.1729	
306.0 (90.7)	$\text{H-5} \rightarrow \text{L} (57\%)$	IL	3.95	314.02	0.1443	
	$H-1 \rightarrow L+2 (57\%)$	MLCT/LLCT	4.04	307.31	0.1263	
	$H \rightarrow L+3 (57\%)$	ILCT	4.10	302.80	0.0805	
230.7 (184)	$H-5 \rightarrow L+1 (36\%)$	IL/ILCT	4.75	261.19	0.1144	
	$H-7 \rightarrow L+1 (17\%)$	IL/ILCT				
	$H-8 \rightarrow L+1 (34\%)$	IL/LLCT/ILCT	5.09	243.74	0.0765	
	$H-7 \rightarrow L+1 (12\%)$	IL/ILCT				
	$H-12 \rightarrow L (47\%)$	LLCT/ILCT/IL	5.19	239.05	0.0688	
	$H-13 \rightarrow L (34\%)$	LLCT/ILCT/IL	5.38	230.64	0.1315	
	$H-4 \rightarrow L+3 (27\%)$	ILCT/IL				
	$H-5 \rightarrow L+5 (18\%)$	LMCT/IL	5.50	225.56	0.0991	
	$H-7 \rightarrow L+2 (17\%)$	IL				
206.35 (235.1)	$H-10 \rightarrow L+3 (15\%)$	LLCT/IL/ILCT	6.13	202.22	0.0692	
	$H-4 \rightarrow L+7 (12\%)$	IL/ILCT				
	$H-11 \rightarrow L+2 (18\%)$	IL	6.22	199.27	0.0960	
	$H-7 \rightarrow L+8 (12\%)$	IL/ILCT				
	$H \rightarrow L+14 (14\%)$	LMCT/ILCT	6.26	198.05	0.0788	
	$H-14 \rightarrow L+1 (13\%)$	IL/ILCT				
	$H-6 \rightarrow L+7 (13\%)$	IL/ILCT				
	$\text{H-12} \rightarrow \text{L+2} \text{ (44\%)}$	LLCT/ILCT	6.27	197.80	0.0817	
	$H-11 \rightarrow L+2 (25\%)$	IL				

Table S12. The energies and characters of the selected spin-allowed electronic transitions for **2** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S13. The energies and characters of the selected spin-allowed electronic transitions for **3** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental		Calculated transi	tions		
absorption λ; nm (10 ⁻³ ε: M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E [eV]	λ [nm]	Oscillator strength
385.4 (3.3)	$H-1 \rightarrow L (98\%)$	MLCT/LLCT	3.05	406.77	0.1248
	$H-3 \rightarrow L (80\%)$	ILCT	3.79	327.31	0.3658
284.9 (19.6)	$H \rightarrow L+2 (57\%)$	MLCT/LLCT	4.01	309.38	0.1121
	$H-2 \rightarrow L+2 (54\%)$	MLCT	4.40	281.81	0.0643
	$H-3 \rightarrow L+1 (63\%)$	ILCT	4.42	280.68	0.2227
	$H-9 \rightarrow L (68\%)$	LLCT/IL	4.49	275.98	0.0661
264.0 (18.2)	$H-4 \rightarrow L+1 (58\%)$	IL/ILCT	4.72	262.49	0.1216
	$H-2 \rightarrow L+4 (28\%)$	MLCT	4.76	260.39	0.0763
	$H-2 \rightarrow L+3 (18\%)$	MLCT			
196.6 (178.2)	$H-3 \rightarrow L+6 (56\%)$	ILCT	5.75	215.48	0.0517
	$\text{H-17} \rightarrow \text{L} (23\%)$	IL/ILCT	5.92	209.60	0.0535
	$\text{H-15} \rightarrow \text{L} (16\%)$	IL/ILCT/LLCT			
	$H-11 \rightarrow L+1 (13\%)$	LLCT/ILCT			
	$H-12 \rightarrow L+1 (24\%)$	IL/ILCT	6.24	198.80	0.0444
	$H-3 \rightarrow L+8 (23\%)$	ILCT			
	$H-11 \rightarrow L+2 (59\%)$	LLCT	6.29	197.21	0.0564
	$H-5 \rightarrow L+6 (32\%)$	ILCT	6.43	192.99	0.0441
	$H-6 \rightarrow L+7 (23\%)$	ILCT/IL			
	$\text{H-18} \rightarrow \text{L} (15\%)$	ILCT/IL	6.46	191.90	0.0453
	$ \text{H-16} \rightarrow \text{L+1} (13\%) $	IL			
	$H-9 \rightarrow L+6 (11\%)$	LLCT/IL/ILCT			

 ϵ – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

Table S14. The energies and characters of the selected spin-allowed electronic transitions for **4** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental	Calculated transitions					
$\lambda; nm$ (10 ⁻³ $\epsilon; M^{-1}cm^{-1}$)	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength	
385.4 (5.4)	$\text{H-1} \rightarrow \text{L} (98\%)$	MLCT/LLCT	3.04	407.28	0.1295	
	$\text{H-3} \rightarrow \text{L} (70\%)$	ILCT	3.74	331.34	0.2269	
	$H-1 \rightarrow L+1 (75\%)$	MLCT/LLCT	3.76	329.85	0.1538	
294.5 (32.5)	$H-4 \rightarrow L (59\%)$	IL	3.91	317.10	0.1073	
	$H \rightarrow L+2 (59\%)$	MLCT/LLCT	4.01	309.56	0.1078	
	$H-3 \rightarrow L+1 (60\%)$	ILCT	4.38	283.40	0.2062	
264.7 (30.8)	$\text{H-9} \rightarrow \text{L} (69\%)$	LLCT/IL	4.48	276.70	0.0597	
	$H-4 \rightarrow L+1 (68\%)$	IL/ILCT	4.72	262.74	0.1510	
	$H-2 \rightarrow L+4 (28\%)$	MLCT	4.76	260.46	0.0742	
	$H-2 \rightarrow L+3 (18\%)$	MLCT				
194.5 (71.8)	$\text{H-15} \rightarrow \text{L} (19\%)$	IL/ILCT	5.91	209.97	0.0578	
	$H-12 \rightarrow L+1 (13\%)$	LLCT				
	$H-13 \rightarrow L+1 (53\%)$	ILCT/LLCT/IL	6.07	204.12	0.0528	
	$H-5 \rightarrow L+5 (70\%)$	LMCT/ILCT	6.28	197.59	0.0403	
	$H-6 \rightarrow L+7 (23\%)$	ILCT	6.44	192.59	0.0747	
	$H-1 \rightarrow L+16 (10\%)$	d-d/LLCT/MLCT				
	$\text{H-9} \rightarrow \text{L+6} (22\%)$	LLCT/IL	6.47	191.80	0.0430	
	$H-4 \rightarrow L+10 (15\%)$	LMCT/IL				
	$ \text{H-10} \rightarrow \text{L+3} (11\%) $	IL				

Table S15. The energies and characters of the selected spin-allowed electronic transitions for **5** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental	Calculated transitions						
absorption λ ; nm $(10^{-3} \varepsilon; M^{-1} cm^{-1})$	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength		
383.2 (9.5)	$H-1 \rightarrow L (98\%)$	MLCT/LLCT	3.04	408.34	0.1044		
300.5 (46.5)	$H-4 \rightarrow L (63\%)$	ILCT	3.88	319.63	0.2750		
	$H-3 \rightarrow L (68\%)$	ILCT/IL	3.94	314.37	0.0948		
	$H \rightarrow L+2 (51\%)$	MLCT/LLCT	4.01	309.23	0.1209		
	$H-8 \rightarrow L (53\%)$	LLCT	4.38	283.09	0.0535		
260.1 (60.9)	$H-3 \rightarrow L+1 (56\%)$	ILCT	4.55	272.55	0.1689		
	$H-3 \rightarrow L+1 (23\%)$	ILCT	4.56	271.68	0.1958		
	$H \rightarrow L+3 (14\%)$	MLCT/LLCT					
	$H-9 \rightarrow L (12\%)$	LLCT					
	$H-2 \rightarrow L+4 (31\%)$	MLCT	4.77	260.23	0.0851		
	H-2 \rightarrow L+3 (17%)	MLCT					
197.4 (125.8)	H-4 \rightarrow L+7 (36%)	IL/ILCT	5.94	208.89	0.0514		
	H-5 \rightarrow L+3 (15%)	ILCT/IL					
	$H-13 \rightarrow L+1 (36\%)$	IL/ILCT	6.28	197.37	0.0659		
	$H-11 \rightarrow L+2 (14\%)$	LLCT					
	$H-5 \rightarrow L+6 (26\%)$	IL	6.36	194.94	0.0647		
	H-3 \rightarrow L+8 (21%)	ILCT/LMCT					
	H-5 \rightarrow L+5 (16%)	LMCT					
	$H-3 \rightarrow L+9 (23\%)$	ILCT/LMCT	6.49	191.15	0.0803		

Table S16. The energies and characters of the selected spin-allowed electronic transitions for 6 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands

Experimental	Calculated transitions				
absorption λ ; nm $(10^{-3} \varepsilon; M^{-1} cm^{-1})$	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength
419.2 (16.5)	$H \rightarrow L (98\%)$	ILCT	2.54	487.62	0.3663
	$H-1 \rightarrow L (98\%)$	MLCT/LLCT	3.04	407.41	0.0123
	$H \rightarrow L+1 (96\%)$	ILCT	3.15	393.40	0.3388
354.1 (9.3)	$H \rightarrow L+2 (98\%)$	ILCT	3.53	351.70	0.0739
308.7 (14.2)	$H \rightarrow L+3 (89\%)$	ILCT/LMCT	3.83	323.46	0.0907
	$H-4 \rightarrow L (59\%)$	IL/ILCT	3.93	315.86	0.1122
	$H-2 \rightarrow L+1 (69\%)$	MLCT/LLCT	3.98	311.94	0.0754
	$\text{H-5} \rightarrow \text{L} (42\%)$	ILCT/IL	4.07	304.86	0.1067
	H-1 \rightarrow L+2 (27%)	MLCT/LLCT			
246.2 (17.7)	$H-4 \rightarrow L+1 (56\%)$	IL	4.73	262.08	0.1767
	$\text{H-11} \rightarrow \text{L} (31\%)$	IL	5.13	241.81	0.0792
	$H-3 \rightarrow L+5 (13\%)$	MLCT			
	$H-6 \rightarrow L+1 (11\%)$	IL/LLCT/ILCT			
	H-10 \rightarrow L+1 (13%)	LLCT/ILCT	5.54	223.89	0.0788
	H-4 \rightarrow L+5 (12%)	IL/ILCT			
	$H-1 \rightarrow L+11 (10\%)$	d-d/LMCT			
192.2 (178.2)	H-4 \rightarrow L+9 (23%)	LMCT/IL/ILCT	6.33	195.77	0.0707
	$H-13 \rightarrow L+1 (17\%)$	IL/ILCT			
	$H-9 \rightarrow L+6 (38\%)$	LLCT/IL	6.45	192.28	0.0639
	$H-11 \rightarrow L+3 (16\%)$	IL/LMCT			
	H-4 \rightarrow L+9 (31%)	LMCT/IL/ILCT	6.47	191.69	0.1285
	$ \text{H-13} \rightarrow \text{L+1} (14\%) $	IL/ILCT			
	$H-9 \rightarrow L+6 (13\%)$	LLCT/IL			

Table S17. The energies and characters of the of two lowest vertical electronic transitions for **6** complex obtained in TDDFT calculations with using different functionals.^{*a*}

Solvent	State	E [eV]	λ [nm]	f	Character			
	B3LYP							
	S_1	2.54	487.62	0.3663	$H \rightarrow L$	IL/ILCT		
ACN	S ₂	3.04	407.42	0.0123	f Character LYP 0.3663 $H \rightarrow L$ 0.0123 $H-1 \rightarrow L$ 0.3558 $H \rightarrow L$ 0.0203 $H-1 \rightarrow L$ 0.1849 $H \rightarrow L$ 0.1474 $H \rightarrow L$ 0.1474 $H \rightarrow L$ 0.1474 $H \rightarrow L$ 0.0066 $H-1 \rightarrow L$ 0.9425 $H \rightarrow L$ 0.1424 $H-1 \rightarrow L$ H-1 $\rightarrow L$ $H \rightarrow L$ 0.5399 $H \rightarrow L$ 0.4316 $H-1 \rightarrow L$ 0.7836 $H \rightarrow L$ 0.7935 $H \rightarrow L$ 0.3754 $H-1 \rightarrow L$ 0.3754 $H \rightarrow L$ 0.3754 $H \rightarrow L$ 0.2192 $H -1 \rightarrow L$ 0.2125 $H -1 \rightarrow L$	MLCT		
CUCI	S_1	2.58	481.02	0.3558	$H \rightarrow L$	IL/ILCT		
CHCI3	S_2	2.86	433.58	0.0203	$H-1 \rightarrow L$	MLCT		
BP86								
ACN	\mathbf{S}_1	1.80	688.30	0.1849	$H \rightarrow L$	IL/ILCT		
ACN	S_2	2.36	524.72	0.1474	$H \rightarrow L+1$	IL/ILCT		
CHC1.	S_1	1.84	673.14	0.1816	$H \rightarrow L$	IL/ILCT		
	S_2	2.19	566.45	0.0066	$H-1 \rightarrow L$	MLCT		
			(vB97				
	S_1	4.08	303.61	0.9425	$H \rightarrow L$	IL/ILCT		
ACN	S_2	4.16	297.73	0.1424	$\begin{array}{c} \text{H-1} \rightarrow \text{L} \\ \text{H-1} \rightarrow \text{L+4} \end{array}$	MLCT		
CUCI	S_1	4.09	303.46	0.5399	$\begin{array}{c} H \rightarrow L \\ H-1 \rightarrow L \end{array}$	IL/ILCT/MLCT		
CHCI3	S_2	4.13	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MLCT/IL/ILCT				
			a	B97x				
ACN	\mathbf{S}_1	3.96	313.42	0.9364	$H \rightarrow L$	IL/ILCT		
ACN	S_2	4.08	304.15	0.1124	$H-1 \rightarrow L$	MLCT		
CUCI	S_1	3.95	313.86	0.5395	$\begin{array}{c} H \rightarrow L \\ H-1 \rightarrow L \end{array}$	IL/ILCT/MLCT		
CHCI3	S_2	4.01	308.93	0.3754	$\begin{array}{c} \mathrm{H}\text{-}\mathrm{l} \rightarrow \mathrm{L} \\ \mathrm{H} \rightarrow \mathrm{L} \end{array}$	MLCT/IL/ILCT		
			CAN	1-B3LYP				
	S_1	3.50	354.43	0.7935	$H \rightarrow L$	IL/ILCT		
ACN	S_2	3.74	331.72	0.0702	$H-1 \rightarrow L$	MLCT		
CUCI	S_1	3.50	354.11	0.5606	$H \rightarrow L$	IL/ILCT		
CHCI3	S_2	3.61	343.79	0.2192	$H-1 \rightarrow L$	MLCT		
			LC	-BLYP				
	\mathbf{S}_1	4.14	299.50	0.9031	$H \rightarrow L$	IL/ILCT		
ACN	S ₂	4.24	292.69	0.2125	$\begin{array}{c} \text{H-1} \rightarrow \text{L} \\ \text{H-1} \rightarrow \text{L+4} \end{array}$	MLCT		
CUCI	S_1	4.14	299.67	0.5605	$\begin{array}{c} H \rightarrow L \\ H-1 \rightarrow L \end{array}$	IL/ILCT/MLCT		
	S ₂	4.21	294.65	0.4475	$\begin{array}{c} H-1 \rightarrow L \\ H \rightarrow L \end{array}$	MLCT/IL/ILCT		

Figure S1. A view of the crystal packing showing intermolecular π - π stacking interactions for 1 and 6.

Figure S2. DSC thermograms of compound **2**. T_c : crystallization temperature; T_m melting point temperature; T_g glass transition temperature.

Figure S3. Molecular orbital energy level graph of complexes 2, 3 and 6 at the DFT/B3LYP level using different basis sets.

Figure S4 Excitation and emission spectra together with PL lifetime curves for **1-6** in CHCl₃, MeCN, low-temperature MeOH:EtOH glass matrix and in solid state.

Figure S5. Isodensity surface plots of the HSOMO and LSOMO for the complexes 1-6 at their T₁ state geometry calculated in MeCN medium at the TD-DFT/DFT/B3LYP level associated with the PCM model. Blue and grey colours show regions of positive and negative spin density values, respectively.

Figure S6. AFM images (10 μ m x 10 μ m) of the blend PVK with compound 3