Supporting Information

Electrocatalytic reduction of PhCH₂Cl on Ag-ZSM-5 zeolite modified electrode

Guo-Jiao Sui, Qi-Long Sun, Di Wu, Wang-Jun Meng, Huan Wang*, Jia-Xing Lu*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

1. Materials and Instruments

All reagents were used as received, except for acetonitrile which was dried over 4Å molecular sieves.

XRD patterns were collected at 35 kV and 25 mA using a Rigaku Ultima IV diffractometer with Cu K α radiation.

SEM measurements were achieved on a Hitachi S-4800 instrument.

TEM analyses were carried on a FEI TECNAI G2 F30 operating at 300 KV.

The amounts of Si, Al, Na and Ag etc. in zeolites were quantified by ICP on a Thermo IRIS Intrepid II XSP atomic emission spectrometer.

Nitrogen adsorption-desorption isotherms at 77K were obtained on a BELSORP-max equipment. Specific surface areas were calculated according to the BET-method using five relative pressure points in the interval of 0.01 - 0.1, and the external surface and the micropore volume of the samples were calculated using the *t*-plot method.

XPS was measured using a Thermo Fisher Scientific ESCALAB 250 spectrometer with Al K α radiation (1486.6 eV) as incident beam with a monochromator.

H₂-TPR analysis was carried out with the Quantachrome Chem 3000 apparatus.

The conductivity was determined by Four-Point Probes RST-8.

All electrochemical experiments were performed on a CHI 660D electrochemical work station (Chenhua, Shanghai, China) in an undivided cell.

Electrocarboxylation yield was quantitative analyzed by Gas Chromatography (Shimadzu, GC-2014).

2. General procedure

2.1. General procedure for preparation of Ag-ZSM-5 zeolite modified electrode (Ag-ZSM-5/SS ZME)

The stainless steel substrates (SS-304) were polished by abrasive paper (400 grit), then cleaned with distilled water and acetone in an ultrasonic cleaner. The Ag-ZSM-5/SS zeolite modified electrodes were synthesized by a one-step process in a solution with a molar composition of Al:NaOH:TPAOH:TEOS:AgNO₃:H₂O = 0.0018:0.64:0.16:1.0:0.078:92.0. The clear solution was aged at room temperature for 4 h under stirring and then transferred to a 100 mL Teflon-lined Parr autoclave. The stainless steel substrates were fixed inside the synthesis solution. Crystallization was carried out in a convection oven at 175 °C for 16 h. The samples were then removed from the autoclave and cooled.

2.2. Electrochemical measurements of Ag-ZSM-5/SS

Cyclic voltammetry were carried out using a traditional three-electrode system with a Ag, or Ag-ZSM-5/SS as working electrode, a Pt wire as counter electrode and a Ag/AgI/I⁻ as reference electrode, in 2.6 mM PhCH₂Cl – 0.1 M TEAP – MeCN solution.

Potentiostatic electrolysis were carried out with a Ag or Ag-ZSM-5/SS as working electrode, a Mg rod as sacrificial anode and a Ag/AgI/I⁻ as reference electrode, in 0.05 M PhCH₂Cl – 0.1 M TEAP – MeCN solution in the presence of CO₂. After the electrolytsis, the electrolyte was esterified by addition of anhydrous K₂CO₃ and methyl iodide at 50-60°C for 5 h. The solution was treated with aq HCl and extracted by diethyl ether. The organic layers were washed with H₂O, dried over MgSO₄, and evaporated before quantitatively analyzed by GC. The electrochemically active surface areas (ECSA, cm²) of Ag-ZSM-5/SS were measured by analyzing the charge associated with Pd under potential deposition stripping, associated with theoretical value of 400 μ C/cm² for full coverage of Pb on Ag.[1]

3. Characterization of Ag-ZSM-5/SS

Element	Weight	Atomic (%)
	(%)	
O K	49.51	76.52
Na K	2.81	3.02
Al K	0.09	0.08
Si K	14.53	12.80
Ag L	33.07	7.58
Totals	100.00	

Fig. S1 The EDX spectrum of Ag-ZSM-5

Fig. S2 N_2 adsorption–desorption isotherms for ZSM-5 (a) and Ag-ZSM-5(b)

Fig. S3 XRD patterns of Ag-ZSM-5/SS electrodes prepared under different AgNO₃ concentration. a. Ag-ZSM-5/SS (0.0125 M), b. Ag-ZSM-5/SS (0.025 M), c. Ag-ZSM-5/SS (0.05 M), d. Ag-ZSM-5/SS (0.075 M), e. Ag-ZSM-5/SS (0.1 M).

4. Characterization of used Ag-ZSM-5/SS

Fig. S4. XRD pattern (a) and SEM image (b) of Ag-ZSM-5/SS after bulk electrolysis.

Reference

1. E. Kirowa-Eisner, D. Tzur and E. Gileadi, J. Electroanal. Chem., 2008, 621, 146-158.