Dual role of Hydrogen Peroxide on the Oxidase-like Activity of Nanoceria and its

Application for Colorimetric Hydrogen Peroxide and Glucose Sensing

Ruochen Guo^{a,1}, Yanru Wang^{a,1}, Shaoxuan Yu^a, Wenxin Zhu^a, Fangqing Zheng^a,

Wei Liu^a, Daohong Zhang^a, Jianlong Wang^{a,*}

^a College of Food Science and Engineering, Northwest A&F University, Yangling,

712100, Shaanxi, China

¹ Both Ruochen Guo and Yanru Wang rank as the first authors. Corresponding Author: Tel/fax +86 29 87092275; Email: <u>wanglong79@yahoo.com</u>

Fig. S1 Photograph of nanoceria solution.

Fig. S2 Typical absorption curves of TMB reaction solutions mixing with (a) Ce NPs;(b) Ce NPs and H2O2; (c)H2O2 at room temperature in acetate buffer after reactionfor 10 min. Inset: photographs of different solutions each corresponding to (a) to (c).

Fig.S3 Dependency of the Ce NPs oxidase-like activity on Ce NPs concentration (A), reaction time (B), pH (C) and temperature (D). Experiments were carried out using 0.8 mM TMB as a substrate and the reaction time was 10 min in the group of (A), 20 min in the group of (C) and (D). The H_2O_2 concentration was 0 mM in all Ce NPs catalysis experiments and 10 mM in the HRP catalysis experiments. The error bars represent the standard deviation for three measurements.

Fig. S4 Steady-state kinetic assay and catalytic mechanism of Ce NPs. The velocity (v) of the reaction was measured using 50 mg/L Ce NPs in 1 mL acetate buffer at pH 4.0 and room temperature (about 15°C).

			sensors			
		H ₂ O ₂		Glucose		
Catalyst	Substrate	IOD	Linear	IOD	Linear	
Catalyst	Substitute	(uM)	Range		Range	Reference
		(μινι)	(µM)	(µ111)	(µM)	
Nanoceria	TMB	2.5	4–40	2	4–40	This work
Gold	TMB	_	_	_	2.0×10 ³ -	1
clusters					1.0×10 ⁴	
Fe ₃ O ₄	ABTS	3.0	5-100	30	50-1000	2
NiO	TMB	8.0	0.02-0.10	20	50-500	3
nitrogen-						
doped						
graphene	TMB	5.3	20-1170	16	25-375	4
quantum						
dots						

 Table S1. Comparison of the proposed method with other colorimetric glucose

References

- 1 X. Jiang, C. Sun, Y. Guo, G. Nie and L. Xu, *Biosens. Bioelectron.*, 2015, 64, 165–70.
- 2 H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250–4.
- 3 Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang and J. Xu, *Biosens. Bioelectron.*, 2015, **64**, 147–53.
- 4 L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Wang, Y. Jiang and X. Chen, *Anal. Chim. Acta*, 2015, **869**, 89–95.