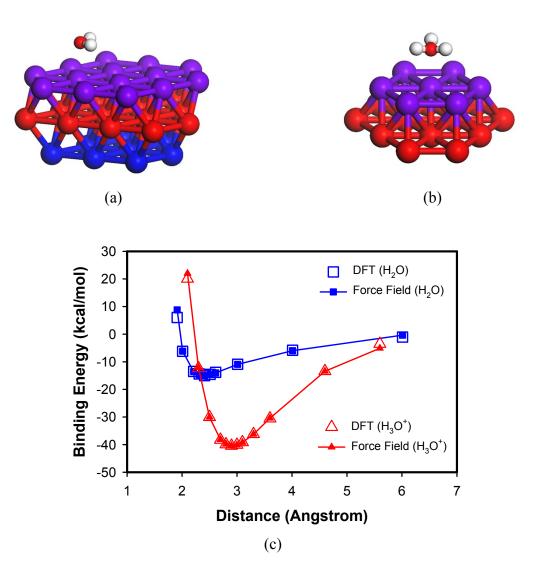
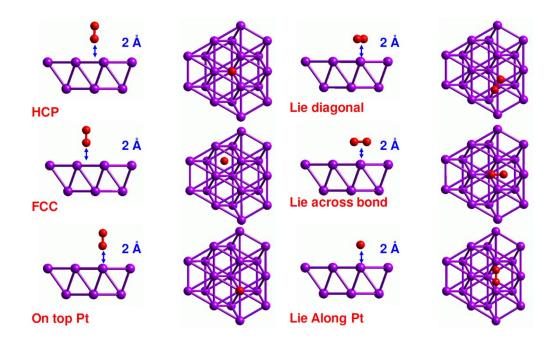
Interactions of Pt nanoparticle with molecular components in polymer electrolyte membrane fuel cells: Multi-scale modeling approach

Giuseppe F. Brunello,^a Ji Hye Lee,^b Seung Geol Lee,^{*b} Ji Il Choi,^a David Harvey ^c and Seung Soon Jang^{*a,d,e}

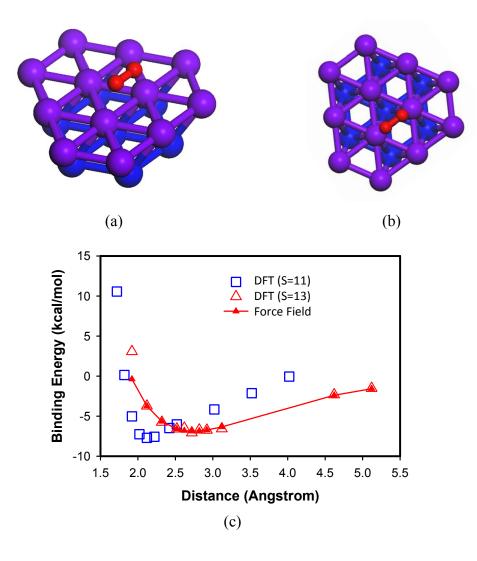
^a Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332-0245, USA

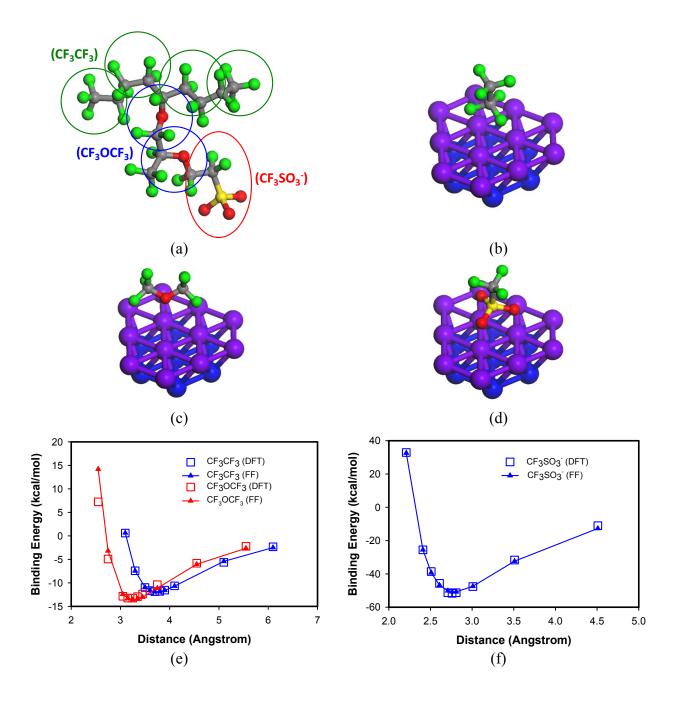

^b Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon gil, Geumjeong-gu, Busan 46241, Republic of Korea

^c Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8, Canada


^d Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA

^e Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA


* To whom correspondence should be addressed. seunggeol.lee@pusan.ac.kr (S.G. Lee), Phone) +82-51-510-2412, Fax) +82-51-512-8175, SeungSoon.Jang@mse.gatech.edu (S.S. Jang), Phone) +1-404-385-3356, Fax) +1-404-894-9140


Figure S1. Adsorptive binding energy of H_2O (water) and H_3O^+ (hydronium) molecule on Pt (111) surface: (a) optimized geometry of $H_2O-Pt_{14-13-8}$; (b) optimized geometry of $H_3O^+-Pt_{12-7}$; (c) change of binding energy of H_2O and H_3O^+ on Pt (111) surface as a function of distance. For DFT calculations, M06 functional is used with LACVP** basis set. For force field calculations, Morse potential function is used with newly optimized off-diagonal van der Waals parameters.

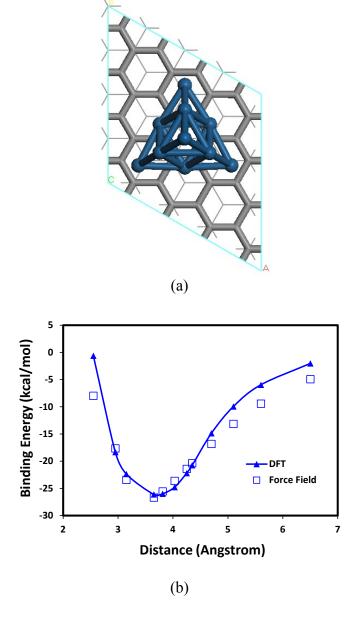

Figure S2. Side and top views of the six initial configurations before geometrically optimizing molecular oxygen on the Pt surface.

Figure S3. Adsorptive binding energy of O_2 (oxygen) molecule on Pt (111) surface: (a) tile view of optimized geometry of O_2 -Pt₁₄₋₁₃₋₈; (b) top view of optimized geometry; (c) change of binding energy of O_2 on Pt (111) surface as a function of distance. For DFT calculations, M06 functional is used with LACVP** basis set. For force field calculations, Morse potential function is used with newly optimized off-diagonal van der Waals parameters.

Figure S4. Adsorptive binding energy of fragments of polymer electrolyte (Nafion) on Pt (111) surface: (a) fragments of Nafion; (b) optimized geometry of CF₃CF₃-Pt₁₂₋₇; (c) optimized geometry of CF₃OCF₃-Pt₁₂₋₇; (c) optimized geometry of CF₃SO₃⁻-Pt₁₂₋₇; (e) change of binding energy for CF₃CF₃-Pt₁₂₋₇ and CF₃OCF₃-Pt₁₂₋₇; (f) change of binding energy for CF₃SO₃⁻-Pt₁₂₋₇. For DFT calculations, M06 functional is used with LACVP** basis set. For force field calculations, Morse potential function is used with newly optimized off-diagonal van der Waals parameters.

Figure S5. Adsorptive binding energy of Pt_{6-3-1} cluster model on graphite surface: (a) optimized structure of Pt_{6-3-1} on graphite; (b) change of binding energy of Pt_{6-3-1} on graphite surface as a function of distance. For DFT calculations, PBE-D3 functional is used with DNP basis set. For force field calculations, Morse potential function is used with newly optimized off-diagonal van der Waals parameters.