Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

A thermodynamic investigation

of the LiBH₄-NaBH₄ system

Erika M. Dematteis,^{a)b)} Elsa Roedern,^{b)} Eugenio R. Pinatel,^{a)} Marta Corno,^{a)} Torben R. Jensen ^{b)}and

Marcello Baricco^{a)*}

^{a)}Department of Chemistry and Inter-departmental Center Nanostructured Interfaces and Surfaces (NIS)

University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy

^{b)}Department of Chemistry, Center for Materials Crystallography (CMC) and Interdisciplinary Nanoscience

Center (iNANO) Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

SUPPLEMENTARY INFORMATION

Table S1 – ICP (elemental analysis) data for LiBH₄ (starting material) expressed as the relative contents of B and Li.

В	B Li		Li	Purity	
(mg/kg)	(mg/kg)	(mmol/kg)	(mmol/kg)	(ICP)	
0.551	0.355	0.0510	0.0511	>99 %	

Table S2 – All DSC data. The area value reported in red were obtained from the integration of thedouble peak.

		Peak Area (J/g)				Tonset (°C)				
	LiBH ₄	Phase Transition		Melting		Phase Transition		Melting eutectic		Liquidus
Sample	mol%	heating	cooling	heating	cooling	heating	cooling	heating	cooling	cooling
s1	10	13		5		95		215		
s2	20	25	18	24	21	95	85	218	217	
s3	30	39	35	47	46	94	85	217	217	
s4	40	59		75		94		217		
s5	50	69	75	123	125	94	86	216	217	
s6	60	101	101	230	269	94	84	215	214	280
s6.2	62	116	112	254	276	94	86	215	217	270
s6.5	65	109	123	224	213	95	86	216	219	
s7	70	135	133	263	255	95	86	215	217	
s7.5	75	145	151	225	224	94	86	214		221
s8	80	146	168	259	216	94	86	217		227
s9	88	167	212	307	274	95	85	227		247
s9.5	95	171	173	482	338	94	90			259
s9.8	98	203	171	344	389	95	98			268

Figure S1 – All data from Temperature programmed photographic analysis (TPPA), $\Delta T/\Delta t = 5$ °C/min, argon atmosphere, temperature range 200-300 °C.

Figure S2 – Offset data from DSC measurements, $\Delta T/\Delta t = 5$ °C/min, 40 mL/minute argon flow, heating (A) and cooling (B).

Figure S3 – SR-PXD of s1 ($\Delta T/\Delta t = 5$ °C/min, argon atmosphere, temperature range 25-450 °C, λ =0.9938 Å).

s1 shows the polymorphic transition at 95 °C and eutectic melting at 226 °C. Complete melting is not observed, indicating that it happens at temperature higher than 450 °C.

Figure S4 – SR-PXD of s2 ($\Delta T/\Delta t = 5$ °C/min, argon atmosphere, temperature range 25-458 °C, λ =0.9938 Å).

s2 shows the polymorphic transition at 95 °C, the eutectic melting at 224 °C and the complete melting at 458 °C.

Figure S5 – SR-PXD of s5 ($\Delta T/\Delta t = 5$ °C/min, argon atmosphere, temperature range 25-425 °C, λ =0.9938 Å).

s5 shows the polymorphic transition at 95 °C, the eutectic melting at 229 °C and the complete melting at 365 °C. Above 365 °C s5 decomposes into an unknown phase.

Figure S6 – SR-PXD of s8 ($\Delta T/\Delta t = 5$ °C/min, argon atmosphere, temperature range 25-251 °C, λ =0.9938 Å).

s8 shows the polymorphic transition at 103 °C. The reflections from NaBH₄ vanish at 211 °C, significantly before the melting of the eutectic, indicating the formation of a hexagonal solid solution. Upon further heating, the release of Na from the solid solution is observed at 232 °C, just before the complete melting at 248 °C. The unit cell parameter of hexagonal solid solution decreases significantly, as NaBH₄ is expelled from the structure, due to a reduced solubility during the melting of the mixture.

Figure S7 – HT-PXD of NaBH₄ at different temperatures in equilibrium condition (λ =1.54059 Å).

Figure S8 – HT-PXD of s1 at different temperatures in equilibrium condition (λ =1.54059 Å).

Figure S9 – HT-PXD of s3 at different temperatures in equilibrium condition (λ =1.54059 Å).

Figure S10 – HT-PXD of s7 at different temperatures in equilibrium condition (λ =1.54059 Å).

Figure S11 – HT-PXD of s9 at different temperatures in equilibrium condition (λ =1.54059 Å).

Figure S12 – HT-PXD of LiBH₄ at different temperatures in equilibrium condition (λ =1.54059 Å).