## Electronic supplementary information for the RSC Advances paper

## Effect of insertion of low leakage polar layer on leakage current and multiferroic properties of BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayer structure

Savita Sharma<sup>1,3</sup>, Monika Tomar<sup>2</sup>, Ashok Kumar<sup>4</sup>, Nitin K. Puri<sup>3</sup> and Vinay Gupta<sup>1\*</sup>

<sup>1</sup>Department of Physics and Astrophysics, University of Delhi, Delhi, INDIA,

<sup>2</sup>Physics Department, Miranda House, University of Delhi, Delhi, INDIA,

<sup>3</sup>Department of Applied Physics, Delhi Technological University, Delhi, INDIA,

<sup>4</sup>CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, Delhi, INDIA

Fig. S1 Schematic diagram of BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayers prepared on Silicon substrate



Fig. S2 C-V characteristics of BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayer structure having six stacking layers.



Fig. S2 represents the capacitance - voltage (C-V) characteristics of six layer BiFeO<sub>3</sub>/BaTiO<sub>3</sub> structure. A little asymmetry was observed in the C-V curve due to the difference in the top (Au) and bottom (Pt) electrodes.

|          |                      |       | BaTiO₃            |                   | BiFeO <sub>3</sub> |        |                   |                   |
|----------|----------------------|-------|-------------------|-------------------|--------------------|--------|-------------------|-------------------|
|          | Lattice<br>parameter |       | Stress<br>modulus | c/a<br>distortion | Lattice parameter  |        | Stress<br>modulus | c/a<br>distortion |
|          | a (Å)                | c (Å) | (%)               | ratio             | a (Å)              | c (Å)  | (%)               | ratio             |
| 2 layers | 3.985                | 4.024 | 0.223             | 1.0097            | 5.492              | 13.423 | 3.201             | 2.4437            |
| 3 layers | 4.372                | 4.061 | 0.694             | 0.9288            | 5.495              | 13.419 | 3.230             | 2.4420            |
| 4 layers | 4.369                | 4.058 | 0.619             | 0.9288            | 5.530              | 13.548 | 2.300             | 2.4499            |
| 5 layers | 4.385                | 4.080 | 1.165             | 0.9304            | 5.535              | 13.530 | 2.430             | 2.4444            |
| 6 layers | 4.372                | 4.078 | 1.115             | 0.9327            | 5.424              | 13.315 | 3.980             | 2.4548            |
| 7 layers | 4.598                | 4.095 | 1.537             | 0.8906            | 5.420              | 13.321 | 3.937             | 2.4577            |
| Bulk     | 3.999                | 4.033 |                   | 1.0085            | 5.876              | 13.867 |                   | 2.3599            |

**Table ST 1:** Lattice parameters "a" and "c", c/a lattice distortion and stress modulus along c-axis in the BaTiO<sub>3</sub> and BiFeO<sub>3</sub> layers in BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayer structures.

The lattice parameters of BiFeO<sub>3</sub> and BaTiO<sub>3</sub> in multilayer thin film structures were calculated by Le-Bail fitting using Bruker Topas 3 software. The corresponding data reported for bulk BaTiO<sub>3</sub> and BiFeO<sub>3</sub> are also included in Table ST 1 for comparison. The values of lattice parameters a and c were estimated to be 4.372 Å and 4.078 Å for BaTiO<sub>3</sub> and 5.424 Å and 13.315 Å for BiFeO<sub>3</sub> respectively for the six layered BiFeO<sub>3</sub>/BaTiO<sub>3</sub> system (Table ST 1). These values are slightly lower than the corresponding bulk values for BiFeO<sub>3</sub> and slightly greater in case of BaTiO<sub>3</sub> [JCPDS card No. 01-072-0138 and 01-072-2035], indicating the presence of stress in the BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayer structures prepared by PLD. The stress modulus in the BiFeO<sub>3</sub>/BaTiO<sub>3</sub> multilayer thin film is obtained using equation: Stress =  $(c_0-c)/c_0$  in %, where "c" is the respective lattice constant of BiFeO<sub>3</sub> or BaTiO<sub>3</sub> in deposited multilayer structure and " $c_0$ " is the corresponding bulk value.

|          | Ρ <sub>r</sub><br>(μC/cm²) | P <sub>s</sub><br>(µC/cm²) | 2E <sub>c</sub> (kV/cm) | Leakage<br>current (A)  | M <sub>r</sub><br>(emu/cm³) | M₅<br>(emu/cm³) |
|----------|----------------------------|----------------------------|-------------------------|-------------------------|-----------------------------|-----------------|
| 2 layers | 8.29                       | 17.92                      | 6.06                    | 1.52 x 10 <sup>-5</sup> | 10.33                       | 28.29           |
| 3 layers | 13.40                      | 29.46                      | 6.49                    | 2.51 x 10 <sup>-6</sup> | 13.45                       | 37.67           |
| 4 layers | 29.53                      | 49.60                      | 6.77                    | 6.38 x 10 <sup>-7</sup> | 21.26                       | 56.42           |
| 5 layers | 45.72                      | 64.47                      | 11.18                   | 1.62 x 10 <sup>-7</sup> | 32.98                       | 86.88           |
| 6 layers | 72.14                      | 99.80                      | 10.25                   | <b>3.18 x 10</b> -8     | 35.32                       | 94. <b>70</b>   |
| 7 layers | 15.96                      | 26.25                      | 11.11                   | 5.16 x 10⁻ <sup>6</sup> | 15.79                       | 42.36           |

 Table ST 2: Ferroelectric, ferromagnetic parameters and leakage current of BiFeO<sub>3</sub>/BaTiO<sub>3</sub>

 multilayer structures having different number of layers.