Supporting Information for Publication of

RSC Advances

Highly Selective Separation of Individual Platinum Group Metals (Pd, Pt, Rh) from Acidic Chloride Media using Phosphonium-based Ionic Liquid in Aromatic Diluent

Viet Tu Nguyen,^{†,‡} Jae-chun Lee,^{*,†,‡}, Alexandre Chagnes,[§] Jinki Jeong,^{†,‡} Min-seuk Kim,^{†,‡} Gérard Cote[§]

[†]Resources Recycling, Korea University of Science and Technology (UST), Daejeon 305-350, Korea [‡]Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Korea

[§]PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005, Paris, France

*Corresponding authors. Tel. +82-42-868-3613; fax. +82-42-868-3705 E-mail address: jclee@kigam.re.kr

Fig. S1 Plot of $\log D$ vs. $\log[P_{66614}^+Cl^-]$

Organic phase: 0.1–0.8 g L⁻¹ [P₆₆₆₁₄]⁺Cl⁻; Aqueous phase: 100 mg L⁻¹ Pt(IV), 55 mg L⁻¹ Pd(II), 25 mg L⁻¹ Rh(III), 0.1 mol L⁻¹ HCl; O/A =1; t = 10 min; T = 298 K.

Nuclear magnetic resonance spectroscopy:

¹H, ¹³C and ³¹P NMR spectra of neat compounds were recorded on a Bruker ARX-500 spectrometer. The ionic liquid phases fully loaded with PGMs were concentrated to dryness under reduced pressure in a rotary evaporator at 70 °C. The residues were diluted in CDCl3 before NMR analysis. Chemical shifts are reported in ppm downfield from the external references (CH₃)₄Si (¹H and ¹³C NMR) and H₃PO₄ (³¹P NMR).

(1): δ H(500 MHz; CDCl₃; (CH₃)₄Si) 2.6823–2.5965 (8 H_a, m, 4×CH₂) 1.6535–1.5867 (16 H_b, m, 8×CH₂), 1.3527–1.2759 (32 H_c, m, 16×CH₂), and 0.9157 (12 H_d, t, ³*J* 6.6, 4×CH₃). δ C(125 MHz; CDCl₃; (CH₃)₄Si) 31.75, 30.94, 30.71, 30.60, 30.39, 30.27, 29.51, 29.48, 29.45, 29.35, 29.18, 29.16, 28.83, 22.52, 22.20, 21.78, 21.74, 19.33, 18.96, 13.96, 13.81, 13.79. δ P(202 MHz; CDCl₃; H₃PO₄) 32.69 (1 P, s, –(CH₂)₄P⁺).

(2): δ H(500 MHz; CDCl₃; (CH₃)₄Si) 2.5253–2.4676 (8 H_a, m, 4×CH₂), 1.5616–1.5268 (16 H_b, m, 8×CH₂), 1.3480–1.2777 (32 H_c, m, 16×CH₂), and 0.9204 (12 H_d, t, ³*J* 6.9, 4×CH₃). δ C(125 MHz; CDCl₃; (CH₃)₄Si) 31.78, 31.08, 30.69, 30.56, 30.37, 30.25, 29.56, 29.54, 29.53, 29.52, 29.49, 29.47, 29.22, 28.95, 22.54, 22.25, 21.96, 21.92, 19.62, 19.24, 13.98, 13.88. δ P(202 MHz; CDCl₃; H₃PO₄) 32.39 (1 P, s, [–(CH₂)₄P]⁺[PdCl_n]^{(n-2)–}).

(3): δ H(500 MHz; CDCl₃; (CH₃)₄Si) 2.4171–2.3623 (8 H_a, m, 4×CH₂), 1.5624 (16 H_b, br s, 8×CH₂), 1.3234–1.2749 (32 H_c, m, 16×CH₂), and 0.9075 (12 H_d, t, ³*J* 7.0, 4×CH₃). δ C(125 MHz; CDCl₃; (CH₃)₄Si) 31.81, 31.11, 30.67, 30.56, 30.34, 30.22, 29.55, 29.53, 29.52, 29.50, 29.25, 29.01, 22.57, 22.27, 21.91, 21.88, 19.55, 19.51, 19.17, 19.13, 14.00, 13.90. δ P(202 MHz; CDCl₃; H₃PO₄) 32.48 (1 P, s, [-(CH₂)₄P]⁺[PtCl_m]^{(m-4)–}).

Fig. S2 ¹H NMR spectra of neat $[P_{66614}]^+Cl^-$ before PGMs extraction

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) $[P_{66614}]^+CI^-$; Aqueous phase: 55 mg L^{-1} Pd(II), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Fig. S4 ¹H NMR spectra of loaded $[P_{66614}]^+$ Cl⁻ after Pt(IV) extraction

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) [P₆₆₆₁₄]⁺Cl⁻; Aqueous phase: 100 mg L^{-1} Pt(IV), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Fig. S5 ¹³C NMR spectra of neat $[P_{66614}]^+$ Cl⁻ before PGMs extraction

Fig. S6 ¹³C NMR spectra of loaded $[P_{66614}]^+$ Cl⁻ after Pd(II) extraction

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) $[P_{66614}]^+CI^-$; Aqueous phase: 55 mg L^{-1} Pd(II), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Fig. S7 ¹³C NMR spectra of loaded $[P_{66614}]^+$ Cl⁻ after Pt(IV) extraction

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) $[P_{66614}]^+Cl^-$; Aqueous phase: 100 mg L^{-1} Pt(IV), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Fig. S9 ³¹P NMR spectra of loaded $[P_{66614}]^+Cl^-$ after Pd(II) extraction Organic phase: 0.6 g L⁻¹ (i.e., 1.16 mmol L⁻¹) $[P_{66614}]^+Cl^-$; Aqueous phase: 55 mg L⁻¹ Pd(II), 0.1 mol L⁻¹ HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) $[P_{66614}]^+CI^-$; Aqueous phase: 100 mg L^{-1} Pt(IV), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.

Overlay Spectrum Graph Report

153825 - RawData - D:\Rajiv\FL_153554.spc
154335 - RawData - D:\Rajiv\FL_154104.spc
155629 - RawData - D:\Rajiv\FL_155359.spc
155954 - RawData - D:\Rajiv\FL_155723.spc
162137 - RawData - D:\Tu\FreshIL101.spc

Fig. S11 UV-vis spectra of PGMs species in aqueous and organic phase

Organic phase: 0.6 g L^{-1} (i.e., 1.16 mmol L^{-1}) $[P_{66614}]^+$ Cl⁻; Aqueous phase: 100 mg L^{-1} Pt(IV) or 55 mg L^{-1} Pd(II), 0.1 mol L^{-1} HCl; O/A =1; three co-current stages; t = 10 min; T = 298 K.