Supporting information to

Enhanced CO₂ adsorption on Al-MIL-53 by introducing hydroxyl

groups into the framework

Jie Yang^a *, Xing Yan^a, Teng Xue^b, Yongshen Liu^a

a. School of Mathematics and Physics, Shanghai University of Electric Power,

Shanghai, 200090, China

b. School of Chemistry and Molecular Engineering, East China Normal University,

Shanghai, 200062, China

*Corresponding author. Dr. J. Yang. E-mail addresses: yj_7667@aliyun.com

Sample	A_1^a	A_2^b	A_1/A_2	(A ₁ /A ₂)/0.541°
L. L	(1200-1270 cm ⁻¹)	(1550-1680 cm ⁻¹)	1 2	(12)
Al-MIL-53	0	8	0	0
Al-MIL-53-OH ₂₅	2.1	18.1	0.116	0.214
Al-MIL-53-OH ₅₀	3.9	18.6	0.210	0.387
Al-MIL-53-OH ₇₅	7.9	18.9	0.418	0.772
Al-MIL-53-OH ₁₀₀	10.5	19.4	0.541	1

Table S1 The calculation of amounts of hydroxyl groups by IR spectra.

a. Area of IR band due to the vibration of Ar-OH (1200-1270 cm⁻¹);

b. Area of IR band due to the vibration of Ar-COO⁻ (1550-1680 cm⁻¹);

c. The ratio of 2,5-dihydroxyl terephathalic acid in the framework calculated referring

to the A_1/A_2 (0.541) of Al-MIL-53-OH₁₀₀.

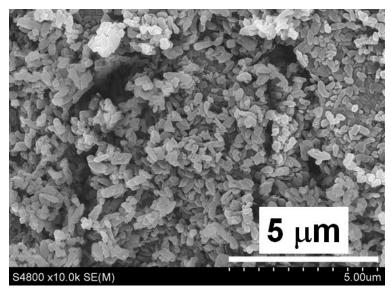


Figure S1. The SEM image of Al-MIL-OH $_{25}$ after reuse for 3 times.

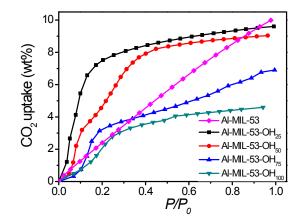


Figure S2 CO₂ adsorption isotherms of hydroxyl modified Al-MIL-53s and Al-MIL-53 at 8 $^{\rm o}{\rm C}.$