Supporting Information

Insights into the effect of Pt dopant into $\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ for methanol

decomposition: A density functional theory study

Yong-Chao Zhang, Zhi-Jun Zuo, Rui-Peng Ren * and Yong-Kang Lv*
Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi China
*Corresponding author. Fax: +86 351 6010386. E-mail address: lykang@tyut.edu.cn (Y.-K. Lv); renruipeng888@126.com (R.-P. Ren).

Fig.S1 The average electrostatic potential through the slab of the Z axis direction, (a) 9Pt$\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$, (b) $3 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ and (c) $1 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$.

Fig.S2 Schematic representation of the $\mathrm{C}-\mathrm{H}$ bond breaking route of CHOH for the methanol decomposition on $9 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ surface. $\mathrm{Cu}, \mathrm{Pt}, \mathrm{C}, \mathrm{O}$ and H atoms are shown in brown, blue, gray, red and white spheres, respectively.

Fig.S3 Schematic representation of the O-H bond breaking route for the methanol decomposition on $9 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ surface. See Fig. S 2 for color coding.

Fig.S4 Schematic representation of the C-H bond breaking route for the methanol decomposition on $3 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ surface. See Fig.S2 for color coding.

Fig.S5 Schematic representation of the C-H bond breaking route of CHOH for the methanol decomposition on $3 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ surface. See Fig. S 2 for color coding.

Fig.S6 Schematic representation of the C-H bond breaking route for the methanol decomposition on $1 \mathrm{Pt}-\mathrm{Cu}(110) / \mathrm{H}_{2} \mathrm{O}$ surface. See Fig.S2 for color coding.

