Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

1	Electronic Supporting Information
2	
3 4	Adsorption of naphthalene onto a high-surface-area nanoparticles loaded activated carbon by high performance liquid chromatography: Response surface methodology, isotherm and kinetic study
5	
6	Mehrorang Ghaedi ^{a*} , Anahita Daneshyar ^a , Arash Asfaram ^a , Mihir Kumar Purkait ^b
7	^a Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
8	^b Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

^{*}Corresponding author at: Tel.: +98 741 2223048; fax: +98 741 2223048. E-mail address:m_ghaedi@mail.yu.ac.ir;m_ghaedi@yahoo.com (M. Ghaedi)

- 30 Tables and figures of contents in Supplementary Material:
- 3132 Table S1. Experimental design based on central composite design (CCD).
- 33

34 **Fig. S1.**(a)Comparison of model predictions with the experimental data, (b) Predicted value of naphthalene 35 adsorption vs. residual effects, (c) normal % probability versus internally studentized residuals and (d) Pareto chart

- 36 for adsorption efficiency.
- 37

Fig. S2. Profiles for predicated values and desirability function for the removal percentage of naphthalene onto ZnS NPs-AC. Dashed line indicated current values after optimization.

40

41 Fig. S3. (a) Langmuir, (b) Freundlich, (c) Temkin and (d) D-R adsorption isotherms for adsorption of naphthalene

- 42 onto ZnS-NPs-AC (Initial naphthalene concentration = 5 to 50 mg L^{-1} adsorbent mass: 0.02 g, sonication time: 15 43 min and pH: 5.0).
- 44

Factors				Levels				
			-α	Low (-1)	Central (0)	High (+1)	$+\alpha$	
A:pH			1.0	3.0	5.0	7.0	9.0	
B: naphthalen	e concentratio	on (mg L ⁻¹)	5	15	25	35	45	
C: adsorbent mass (g)			0.005	0.010	0.015	0.020	0.020 0.025	
D: contact time (min)			5	10	15	20	20 25	
		Fac	tors	rs R% naphthalene				
Run	A	В	C	D	Observed ^a	Predi	Predicted ^b	
1 (C)	5.0	25	0.015	15	85.24	84	84.25	
2	7.0	35	0.020	20	86.68	84	84.36	
3	3.0	35	0.020	10	88.10	85	85.74	
4	3.0	15	0.020	20	98.65	100	100.75	
5	3.0	15	0.010	10	66.70	68	68.84	
6	7.0	35	0.010	10	35.36	33	33.08	
7	5.0	5	0.015	15	97.40	98	98.47	
8	7.0	15	0.020	10	98.41	98	98.94	
9 (C)	5.0	25	0.015	15	85.53	84.25		
10	9.0	25	0.015	15	72.38	74	74.40	
11	5.0	25	0.005	15	38.84	37	37.55	
12	1.0	25	0.015	15	93.74	90	90.97	
13	5.0	25	0.015	5	64.25	65	65.79	
14 (C)	5.0	25	0.015	15	83.96	84	84.25	
15	7.0	15	0.010	20	73.16	75	75.34	
16	7.0	35	0.010	20	43.14	45	45.93	
17	7.0	35	0.020	10	75.24	76	76.84	
18	5.0	25	0.015	25	89.78	87	87.49	
19	7.0	15	0.010	10	75.54	72	72.12	
20	5.0	45	0.015	15	64.71	62	62.90	
21	7.0	15	0.020	20	99.22	96	96.84	
22	3.0	15	0.010	20	83.69	83	83.02	
23 (C)	5.0	25	0.015	15	86.67	84	84.25	
24	3.0	35	0.020	20	99.87	104	104.22	
25	5.0	25	0.025	15	98.49	99	99.04	
26	3.0	35	0.010	10	42.44	45	45.75	
27 (C)	5.0	25	0.015	15	81.67	84	84.25	
28 (C)	5.0	25	0.015	15	82.41	84	84.25	
29	3.0	15	0.020	10	93.75	91	91.89	
30	3.0	35	0.010	20	70.26	69	.55	

45 Table S1. Experimental design based on central composite design (CCD).

46
47 C: Center point, ^a Experimental values of response. ^b Predicted values of response by RSM proposed model.

Fig. S1. (a) Comparison of model predictions with the experimental data, (b) predicted value of naphthalene adsorption vs. residual effects, (c) normal % probability versus internally studentized residuals and (d) Pareto chart for adsorption efficiency.

Fig. S2. Profiles for predicated values and desirability function for the removal percentage of naphthalene onto ZnS-NPs-AC. Dashed line indicated current values after optimization.

Fig. S3. (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin–Radushkevich adsorption isotherms for adsorption of naphthalene onto ZnS-NPs-AC (Initial naphthalene concentration = 5 to 50 mg L^{-1} , adsorbent mass: 0.02 g, sonication time: 15 min and pH: 5.0).