Supplementary Material for

Effect of surface species and structure on the performance of CeO₂ and SO₄²⁻ doped MCM-41 catalyst toward NH₃-SCR

Zhongxian Song ^a, Xiang Wu ^b, Qiulin Zhang ^{a*}, Ping Ning ^{a**}, Jie Fan ^a, Xin Liu ^a, Qixian Liu ^a, Zhenzhen Huang ^c

(^aFaculty of Environmental Science and Engineering, Kunming University of Science and Technology. Kunming, 650500, P.R. China;^bYunnan TianAn Chemical Co., Ltd., Anning, 650309, P.R. China; ^cCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China)

* Corresponding author. Tel:+ 86-871-65170905.

E-mail address:qiulinzhang_kmust@163.com; ningping_58@126.com

The S2p XPS spectra of the Cat-A, Cat-B and Cat-C were shown in Fig. S1. In contrast with the Cat-C catalyst, the Cat-A and Cat-B catalyst showed a weak peak at 168-169 eV, respectively, which corresponded to formation of surface SO_4^{2-} species. However, the intensity of surface SO_4^{2-} species was so weak that it could be not detected by XPS. The phenomenon indicated that no surface S species existed at the outer surface or at the entrance of the pores over the Cat-A, Cat-B and Cat-C.

Fig. SI S2p XPS spectra of the catalysts.