Supplementary information

to

Synthetic m₃G-CAP attachment necessitates a minimum trinucleotide constituent to be recognized as Nuclear Import Signals.

M. Honcharenko,*^{a#} B. Bestas,^{b#} M. Jezowska,^{a#} B. A. Wojtczak,^c P. Moreno,^b J. Romanowska,^a S. M. Bächle,^d E. Darzynkiewicz,^{ce} J. Jemielity,^c C. I. E. Smith,^b and R. Strömberg^{a*}

S2. Synthesis of 5'-pCH ₂ p-A _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ pA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ PA _(OMe) $U_{(OMe)}A$ -linker-N ₃ and m ₃ GppCH ₂ A-linker-N ₃ and m ₃ GppCH ₂ A-linker-N ₃ and m ₃ A-linker-N ₃ and m ₃ GppCH ₂ A-linker-N ₃ and m ₃ and m ₃ A-linker-N ₃ and m ₃ and m ₃ and	Me)A-linker-
N ₃	p 2

S3. Mass Spectra of Biotin linkers..... p 5

S4. Mass Spectra of purified m ₃ G-cap constructs p) (6
---	-----	---

S6. Enlargements of fluorescence spectroscopy images of U2OS cells transfected with STV-Alexa488 complexes of constructs **22** and **23**..... p 14

S7.	Histogram of fluorescent signal intensities across cells transfected with STV-A	lexa488
com	nplex of construct 23	p 15

S1. Synthesis of PEG Biotin Linker (13)

The reaction flask was charged with (4-(propiolamidomethyl)benzoic acid) PATA (5 eq., 0.075 mmol, 15 mg) and HBTU (5 eq., 0.075 mmol, 28 mg), evacuated on a pump and then flushed with N₂. The solid substrates were dissolved in DMF (1 mL) and NMM (25 eq., 0.375 mmol, 41 μ L) was added with a syringe. The reaction mixture was allowed to stir for 30 min. Biotin-PEG(23)-NH₂ (1 eq, 0.015 mmol, 20 mg) was then added and the solution was stirred for an additional 3 h. After this time MS analysis showed completion of reaction and the mixture was concentrated to dryness. The crude product was purified by RP-HPLC using a linear gradient of buffer B in A from 0%–60% in 20 min, detector at 220nm, t_R = 15.0, ES-MS, calcd (M+H) 1484.8, found 1484.0

S2. Synthesis of 5'-pCH₂p-A_(OMe)U_(OMe)A-linker-N₃.

Trinucleotide 5'-HO-A(OMe)U(OMe)A-linker-N₃ (50mg, 0.035 mmol) [Honcharenko et al., RSC Advances, 2012, 2, 12949–12962] was dissolved in anhydrous trimethyl phosphate (700 and the reaction flask placed ice-bath. μL) was on an Then, tetrachloromethylene(bisphosphonate) was added (26 mg, 0.1 mmol, 3 eq) and the mixture was stirred at 0 °C until the disappearance of the starting material as determined by TLC (iPrOH/NH_{3ag}/H₂O, 7:2:1). Usually, after 1.5-2h, the solvent was evaporated under vacuum and to the glassy remaining, NH_{3aq} was added (1 mL) and stirred for additional 4 h at room temperature. Then, the reaction mixture was neutralized with 1M NaHCO_{3aq}, and lyophilized. The crude product was purified by DEAE-Sephadex and isolated as TEA salts. Yield: (285 mOD).

Synthesis of m₃GppCH₂pA_(OMe)U_(OMe)A-linker-N₃.

5'-methylene(bis)phosphonylated trinucleotide 5'-pCH₂pA_(OMe)U_(OMe)A-*linker*-N₃ (100 mOD. 0.0025 mmol) was dissolved in morpholine buffer (1.25 mL, pH 7). Then, m₃GMP-Im (11.2 mg, 0.025 mmol, 10 eq) and MnCl₂ x 4H₂O (5 mg, 0.025 mmol, 10 eq) were added and the reaction mixture was left stirred at 30 °C until the disappearance of the starting material as determined by RP-HPLC. Then, the reaction was stopped by addition of a solution of EDTA in water (0.5 mL) and neutralized with 1 M NaHCO₃. The crude product was purified by preparative RP-HPLC and isolated as NH₄⁺ salts. Yield: (15 mOD)

Fig. 1. i.(POCl₂)₂CH₂, P(O)(OMe)₃, ii. NH₃aq, rt; m₃GMP-Im, MnCl₂, morpholine buffer pH 7

Fig. 2 RP-HPLC profile of the reaction mixture. 18.38 min (m₃GpCH₂pp-A_{2'OMe}U_{2'OMe}A-linker-N₃, MW 1601), 14.106 min (m₃GMP-Im), 10.079 min (m₃GMP).

Fig. 3 ESI MS spectrum (negative mode) of the product m_3GpCH_2pp - $A_{2'OMe}U_{2'OMe}A$ -linker- N_3 , MW 1601

S3. Mass Spectra of Biotin linkers.

Short Biotin Linker (SBL)

Long Biotin Linker (LBL)

PEG Biotin Linker (PEGBL)

S4. Mass Spectra of purified m₃G-cap analogues.

a. Compound 14: m₃GpppA-aza-LBL

b. Compound 15: m₃GpppAOMe-aza-LBL

c. Compound 16: m₃GpppAOMe-phos-aza-LBL

d. Compound 17: m₃GpppAOMe-phos-aza-SBL

e. Compound 18: m₃GppCH₂pA-aza-LBL

f. Compound 19: m₃GpCH₂ppA-aza-LBL

g. Compound 20: m₃GppNHpA-aza-LBL

h. Compound 21: m₃GpNHppA-aza-LBL

i. Compound 22: pAOMeUOMeA-aza-LBL

j. Compound 23: m₃GpppAOMeUOMeA-aza-LBL

k. Compound 24: m₃GppCH₂pAOMeUOMeA-aza-LBL

I. Compound 25: pAOMeUOMeA-aza-PEGBL

m. Compound 26: m₃GpppAOMeUOMeA-aza-PEGBL

S5. Fluorescence spectroscopy images of cells treated with m₃G-CAP biotin construct complexes with STV-Alexa488 that did not display nuclear uptake.

Fluorescence microscopy images of the cells treated with STV-Alexa488 complexes with constructs **14**-**15**, **18-21** and **24**. Nuclear region of the cells are marked with a white arrow. Nuclear transport is evaluated by the Alexa-488 signal from the nucleus.

S6. Enlargements of fluorescence spectroscopy images of U2OS cells transfected with STV-Alexa488 complexes of constructs 22 and 23.

Fluorescence microscopy images of the cells treated with STV-Alexa488 complexes with constructs **22** and**23**. Nuclear region of the cells are marked with a white arrow. Nuclear transport is evaluated by the Alexa-488 signal from the nucleus.

S7. Histogram of fluorescent signal intensities across cells transfected with STV-Alexa488 complex of construct 23.

Confocal microcopy analysis of U2OS cells transfected with the complex of STV-Alexa488 with m3G-CAP construct **23**. Left panel shows the confocal image, whereas the right panel shows histograms that demonstrate fluorescent signal intensities along the indicated yellow line traversing the cells using NIS-Elements A1R software. In the histogram, x axis represents the length of the yellow line (left panel) and the y axis represents the signal intensity. For all images, contrast and brightness were changed for visualization purposes throughout the entire image. Purple lines represents **DRAQ5** nuclear stain and green represents Alexa488 signal.