Supplementary Information for

Molecular mechanism of CO₂ absorption in Phosphonium Amino Acid Ionic Liquid

Prabhat Prakash^a and Arun Venkatnathan^{a*}

^aDepartment of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India

Figure S1. Initial configuration of CO₂-IL slabs at (a) 1 bar, (b) 10 bar and (c) 20 bar partial pressure of CO₂. Box dimensions (in nm) are (a) $4.5 \times 4.5 \times 92.0$, $128:512 \text{ CO}_2$ -IL molecules (b) $4.5 \times 4.5 \times 58.4$, $1024:512 \text{ CO}_2$ -IL molecules and (c) $4.5 \times 4.5 \times 31.1$, $1024:512 \text{ CO}_2$ -IL molecules.

Figure S2. Charge densities of IL before and after absorption of CO_2 at different thermodynamic conditions.

Figure S3. Averaged charge densities (from t = 5 ns to t = 10 ns) of IL for vacuum vs CO₂ in IL system, both at T = 298 K, and for CO₂-IL system p_{CO_2} = 20 bar.

Figure S4. Particle densities of CO₂ in CO₂-IL interface at T = 298 K, p_{CO_2} = 20 bar.

Figure S5. Particle densities of CO₂ at respective T and p_{CO_2} , (a) 298 K, 1 bar; (b) 278 K, 1 bar; (c) 298 K, 10 bar; (d) 278 K, 10 bar; (e) 278 K, 20 bar. In the y – axis, each minor tick corresponds to a value of 0.25 particle nm⁻³ for (a) and (b), and 2.5 particle nm⁻³ for (c), (d) and (e).

Figure S6. Averaged site-site RDF (t = 25 ns to t = 35 ns) between P[P₄₄₄₄]-N1,N2[Lys] for CO₂-IL interface(black) and for vacuum-IL interface(green) at T = 298 K and p_{CO_2} = 20 bar.

Figure S7. MSDs of cations and anions of IL at T = 298 K.

1024 CO₂: 512 IL

1024 CO₂: 512 IL

(b)

Figure S8. Initial configurations of CO₂-IL system at p_{CO_2} = 20 bar and T = 298 K: Configurations (a) and (b) differ in positions and configuration (c) differ in system size.

Figure S9. Averaged particle densities of CO_2 inside the box (t = 25 ns to t = 35 ns) for the CO_2 -IL system.

Figure S10. Averaged site-site RDFs (t = 25 ns to t = 35 ns) between N1,N2[Lys]-C[CO₂] at $p_{CO_2} = 20$ bar and T = 298 K.

Figure S11. MSDs of $[P_{4444}]$ and [Lys] at $p_{CO_2}=20$ bar and T=298 K.

Properties	Previous work	Our work
Density at 298.15 K (g/cm ³)	0.973 *	0.963
	0.962 **	
Density at 321.85 K (g/cm ³)	0.950 **	0.945
CoM RDF between Cation and anion (298 15 K)		
First Maxima (Å)	5.85 **	6.05
First Minima (Å)	8.05 **	8.21
Peak height	2.28 **	2.32
Coordination number	3.55 **	3.75
Conductivity of anion (S/cm)	0.83 x 10 ⁻⁴ *	0.78 x 10 ⁻⁴

Table S1. Standardization of force field for IL with experiment and simulation

* G. Zhou, X. Liu, S. Zhang, G. Yu and H. He, J. Phys. Chem. B, 2007, 111, 7078–7084.

** (a) Zhang, J. M.; Zhang, S. J.; Dong, K.; Zhang, Y. Q.; Shen, Y.; Lu, X. *Chem. Eur. J*, 2006, **12**, 4021–4026. (b) Zhang, J. M.; Zhang, S. J. Combinatorial chemistry research on amino acids and ionic liquids. Postdoctoral Thesis, Institute of Process Engineering, Chinese Academy of Sciences, 2005.

Table S2. Molar absorption ratio (calculated as an average from t = 10.0 ns to t = 30.0 ns)

Total no. of CO ₂ molecules	Temperature (K)	р _{со2} (bar)	No. of CO ₂ molecules absorbed	Molar absorption ratio CO ₂ :IL
128	298	1.0	36	0.070
128	278	1.0	49	0.096
1024	298	10.0	308	0.602
1024	278	10.0	358	0.699
1024	298	20.0	469	0.916
1024	278	20.0	553	1.080

at various thermodynamic conditions