Supporting information

Coordination Polymer-Derived Mesoporous Co₃O₄ Hollow Nanospheres for High-performance Lithium-ions Batteries

Renbing Wu,^{a,b} Xukun Qian,^c Adrian Wing-Keung Law,^{a,d} and Kun Zhou,*a,b

^a Environmental Process Modeling Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Clean Tech Loop, Singapore 637141, Singapore

^b School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

^c School of Engineering and Design, Lishui University, Lishui 323000, China

^d School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

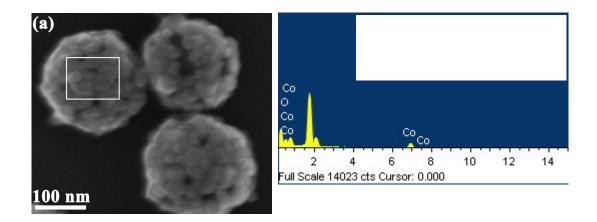
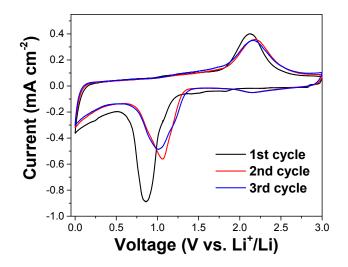



Fig. S1. (a) FESEM image of Co_3O_4 hollow nanospheres and (b) EDS spectrum recorded from the area indicated by a white square in (a).

Fig. S2. The first three consecutive CV curves of the electrode made from porous Co3O4 nanospheres.

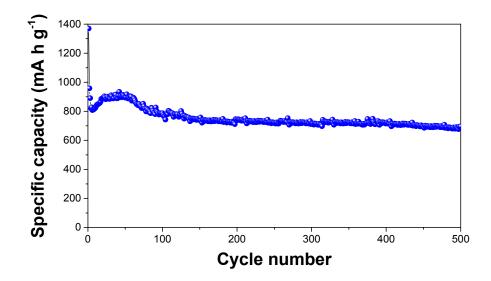


Fig. S3. Cycling performance of the $\rm Co_3O_4$ hollow nanospheres electrode at the current density of 1 A g^{-1}

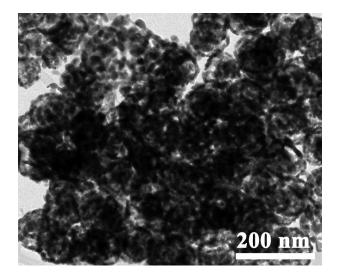


Fig. S4. TEM image of the Co_3O_4 hollow spheres electrodes after 100 cycles at the current density of 0.1 A g⁻¹.