Table S1. Assignments of ¹³C-¹H cross-peaks in HSQC spectra of the lignin fractions isolated from *Eucalyptus*

lable	$\delta_C\!/\delta_H$	assignments		
C _β	52.4/3.51	C_{β} -H _{β} in phenylcoumaran substructures (C)		
\mathbf{B}_{eta}	53.5/3.07	C_{β} - H_{β} in β - β (resinol) substructures (B)		
OMe	55.6/3.73	C-H in methoxyls		
A_{γ}	59.4/3.65	C_{γ} -H _{γ} in β -O-4 substructures (A)		
C_{γ}	62.3/3.70	C_{γ} -H _{γ} in phenylcoumaran substructures (C)		
\mathbf{B}_{γ}	71.0/3.80-4.18	C_{γ} - H_{γ} in β - β resinol substructures (B)		
A_{α}	71.7/4.83	C_{α} -H _{α} in β -O-4 linked to a S unit (A)		
$A_{\beta(G)}$	83.5/4.32	C_{β} - H_{β} in β - O -4 linked to G/H unit (A)		
\mathbf{B}_{α}	84.9/4.64	C_{α} -H _{α} in β - β resinol substructures (B)		
$A_{\beta(S)}$	85.8/4.11	C_{β} - H_{β} in β - O -4 linked to a S unit (A)		
C_{α}	87.1/5.44	C_{α} -H _a in phenylcoumaran substructures (C)		
S _{2,6}	103.6/6.67	C _{2,6} -H _{2,6} in syringyl units (S)		
S' _{2,6}	106.2/7.29	C _{2,6} -H _{2,6} in oxidized S units (S')		
G_2	110.7/6.93	C ₂ -H ₂ in guaiacyl units (G)		
G ₅	114.8/6.92	C ₅ -H ₅ in guaiacyl units (G)		
G_6	118.8/6.79	C ₆ -H ₆ in guaiacyl units (G)		
$I_{\alpha\beta}$	125.6/6.99	$C_{\alpha\beta}$ -H _{$\alpha\beta$} instilbenes units		
I_2	106.2/7.31	C ₂ -H ₂ instilbenes units		

wood under different pretreatment conditions.

Table S2. The yield of the lignin fractions isolated from *Eucalyptus* wood under different pretreatment conditions.

	L-180-0	L-180	L-170	L-160	L-150	L-140	L-130
Yield of lignin ^a (%)	28.52	48.69	35.41	45.29	29.82	38.48	20.95

^aYield of the lignin = (weight of lignin precipitated / weight of lignin in the raw biomass) \times 100%.

Results and Discussion

1. The yield of lignin

After same precipitation process, the lignin fractions were obtained and the corresponding yields varied from 20.95% to 48.69% (Table S2), and the highest value (48.69%) was achieved at 180 °C for 60 min with AlCl₃ catalyst, while the lowest yield (20.95%) of lignin was obtained at 130 °C for 60 min with AlCl₃ catalyst. In addition, it was observed that the yield of the lignin distinctly decreased from 38.48% to 29.82% with the temperature increased from 140 °C to 150 °C, while the delignification ratio reached to the maximum value at150 °C, suggesting that the significant dissociation of the lignin occurred under this temperature and impeded the subsequent precipitation and acquisition, and the lowest molecular weight (690 g/mol) of the lignin obtained at 150 °C also provides some evidence for this phenomenon. However, the yield of lignin was then increased to 35.41-45.29% at 160-180 °C, which was probably attributed to the condensation of lignin at these conditions (temperatures higher than 150 °C), and it would be detailedly discussed in the following GPC and NMR sections. Interestingly, the yield of lignin obtained at 180 °C without AlCl₃ was only 28.52%, which was obviously lower than that catalyzed byAlCl₃ (48.69%) at the same temperature. The result implied that the addition of AlCl₃ in EWS has significantly improved the delignification ratio and yield of lignin.

Fig. S1. Schematic illustration of the experimental procedure.

Fig. S2. ¹³C-NMR of the lignin fractions isolated from *Eucalyptus* wood under different pretreatment conditions.

Fig. S3. ³¹P-NMR of the lignin fractions isolated from *Eucalyptus* wood under different pretreatment conditions.

Fig. S4. CP/MAS ¹³C NMR characterization of the raw material and pretreated substrates.