Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for

Controlled Three-Dimensional Structures for

Liquid Repellency Engineering

Jihye Bong,^a Changui Ahn,^b Taekyung Lim,^a Ju Hyun Park,^c Sang Kyu Kwak,^c Seokwoo Jeon,^b

and Sanghyun Ju^a

S1. Three-dimensional (3D) nanoshell structures of TiO₂ with interconnected capillary

spaces

Fig. S1. (a) Schematic illustration of the 3D-nanoshell-structured-TiO₂ with multiple layers (2 >layers), (b) High-magnification FE-SEM images of the 3D-nanoshell-structured TiO₂.

S2. Transparency properties of 3D-nanoshell-structured TiO₂

Fig. S2. Transparency properties of 3D-nanoshell-structured TiO_2 with periodic interconnected capillary spaces. (a) Optical images of a region of the substrates containing $50 \times 50 \text{ mm}^2$ patterns. (b) Optical transmission spectra of regions of $25 \times 25 \text{ mm}^2$. 3D-nanoshell-structured TiO_2 samples consisting of 1, 3, 4, 9, and 13 layers.

Figure S2(a) presents optical images of the 3D nanoshell structures of TiO_2 with six different thicknesses (flat, 1, 3, 5, 9, and 13 layers). The image of the Commission

Internationale de L'Eclairage (CIE) coordinates in the background was observed through 3D nanoshell structures of TiO₂. Figure S2(b) presents the transmittance values versus the number of layers both before and after HDF-PA treatment. According to these results, in the wavelength range of 350–1450 nm, the color coordinate image of the substrate background was visible to some extent even with increasing layers. The transmittance at a wavelength of 700 nm was 52.4% for 1 layer, 30.5% for 3 layers, 18.2% for 5 layers, 4.0% for 9 layers, and 1.9% for 13 layers before the HDF-PA treatment. After treatment, these values were 51.7%, 29.4%, 18.6%, 4.3%, and 1.5%, respectively. These data indicate a decreasing trend with an increasing number of layers. The transmittance (at 700 nm) of the unstructured TiO₂ thin film before and after HDF-PA addition was 85.6% and 86.0%, respectively. No significant change was observed in transmittance before and after the addition of the HDF-PA SAM. It is assumed that the TiO₂ surface was coated with monolayer perfluorocarbon to a thickness of several nanometers, and accordingly, the addition did not significantly affect the transmittance.

S3. Surface roughness of 3D-nanoshell-structured TiO₂ using atomic force microscopy (AFM)

Fig. S3. The topographical image of 3D-nanoshell-structured TiO₂. (blue square: unit cell) Actual surface area = $2.25 \ \mu m^2$, projected area = $1.177 \ \mu m^2$.

We measured the surface roughness of 3D-nanoshell-structured TiO_2 using atomic force microscopy (AFM). We added the roughness data of 3D-nanoshell-structured TiO_2 . The 3D-nanoshell-structured TiO_2 with 1, 3, 5, 9 and 13 layers showed the similar roughness of ~1.27.

S4. The average and standard deviation of the measured contact angle values (Figure 3)

Table S1. Contact angles of TiO_2 thin film and 3D-nanoshell-structured TiO_2 arrays with 1, 3, 5,

	Number of layer					
	0	1	3	5	9	13
Contact	101.0 ±	123.4 ±	134.9 ±	141.8 ±	148.5 ±	151.3 ±
Angle	0.3°	2.3°	0.9°	1.2°	0.6°	0.3°

9, and 13 layers

Table S2. Contact angles of HDF-PA SAM-coated 3D-nanoshell-structured TiO₂ and the shapes of 6 different liquid droplets (DI water, dextrose, normal saline, amino acid injection, blood, and

oil)

	Liquids					
	D.I. water	Dextrose	Saline	Amino	Blood	Oil
				acid		
Contact	148.9 ±	146.7 ±	144.5 ±	137.2 ±	121.8 ±	115.0 ±
Angle	0.6°	0.8°	1.0°	1.5°	2.2°	2.1°

S5. The contact angles of five solvents with well-known surface tension (*i.e.*, DMSO, chlorobenzene, toluene, acetone, and ethanol).

 Table S3. Contact angles of HDF-PA SAM-coated 3D-nanoshell-structured TiO2 of five

 different liquids (DMSO, chlorobenzene, toluene, acetone, and ethanol)

Liquid	Contact angle	Surface tension (mN·m ⁻¹)
Dimethyl sulfoxide (DMSO)	$70.8 \pm 2.6^{\circ}$	44.0
Chlorobenzene	69.4 ± 1.5°	33.6
Toluene	$56.7 \pm 2.5^{\circ}$	28.5
Acetone	$44.1 \pm 2.5^{\circ}$	23.7
Ethanol	$34.6 \pm 2.5^{\circ}$	21.4