Supporting Information

Fei-Phos Ligand-controlled Asymmetric Palladium -Catalyzed Allylic Substitutions with Structurally Diverse Nucleophiles: Scope and Limitation

Jian-Xing Xu^a, Fei Ye^a, Xing-Feng Bai^{a,b}, Jin Zhang^a, Zheng Xu^a,

Zhan-Jiang Zheng^a, and Li-Wen Xu^{a,b}*

- ^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China Fax: (+) 86-571-28867756, E-mail: liwenxu@hznu.edu.cn
- ^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (CAS) and University of the Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Table of Contents

1.	General InformationS2
2.	Synthesis of chiral ligandsS3
3.	General procedures for Pd-catalyzed asymmetric allylation alkylation to the formation of
	products 2, 3, 5,6, and 8
4. 7	Fable S1-S9
5.]	NMR Spectra of products: ¹ H, ¹³ C, ³¹ P NMRS35
6.]	HPLC Spectra of products: Determination of <i>ee</i> valuesS78

1. General Information

All the reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction vessel under positive pressure of argon. Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. Air- and moisture-sensitive liquids and solutions were transferred via a syringe or a stainless steel cannula. ¹HNMR was recorded at 400 MHz or 500 MHz: chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃: $\delta = 7.26$ ppm). ¹³C NMR was recorded at 100 MHz or 125 MHz: chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl3: $\delta = 77.20$ ppm). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. Infrared spectra were recorded on a Nexus 870 FTIR spectrometer. Toluene, N,N-Dimethylacetamide (DMAc), and CHCl₃ was dried and distilled over CaH₂. THF were distilled from sodium benzophenone ketyl. The preparation of allylic substrates, such as 1,3-diphenyl-2-propenyl acetate was carried out easily according to reported methods^[1].

2. Synthesis of chiral ligands^[2]

The product of similar chiral ligands in the previous report.^[2]

A solution of Bromobenzylaldehyde **S2** (9.2 g, 50 mmol) in EtOH (25 mL) was added dropwise to the ethanol/H₂O (1.5/1) solution (50 mL) of trans-(*R*,*R*)-diaminocyclohexane **S1** (2.85 g, 25 mmol) at room temperature over 1 h. After stirring at reflux temperature for 12 h, H₂O (30 mL) was added to the mixture and cooled to 0 °C. After maintain it for 5 h at the same temperature, the precipitate was filtrated, the filter residue was washed with cooled ethanol and cooled H₂O.

The **S3** was dissolved in a mixture of dry acetonitrile (200 mL) and toluene (20 mL). To the solution was added manganese powder (300 mesh; 2.2 g, 40 mmol), and the resulting mixture was cooled to $0 \,^{\circ}$ C before trifluoroacetic acid (7.6 mL, 80 mmol) was added dropwise over a period of 30 min under an Ar atmosphere. The reaction mixture was stirred vigorously at 20 $\,^{\circ}$ C for 24 h followed by addition of two additional equivalents of trifluoroacetic acid at 0 $\,^{\circ}$ C. After standing at that temperature

for 2 h, the resulting mixture was filtered and the residue was washed with petroleum ether (bp 60-90 °C, 10 mL×2) to afford a white solid. The solid was dissolved in H₂O (10 mL) and neutralized with saturated NaHCO₃ solution to pH = 8. The aqueous solution was extracted with dichloromethane (20 mL×3). The combined organic layer was washed with H₂O (10 mL), dried over anhydrous Na₂SO₄, and concentrated. The resulting product can be applied directly to the next step reaction without further purification .

S4 (12 mmol) was dissolved in THF (20 mL), which was added dropwise to the solution of sodium hydride (80% purity, 0.86 g, 28.8 mmol) at 0 °C. After stirring at the same temperature for 3 h. Iodomethane (1.86 mL, 30 mmol) was added to the above mixture at the same temperature and the resulting mixture was stirred at room temperature for 12 h. A solution of 1M aqueous NaHSO₃ was added slowly to quench the reaction. The aqueous phase was extracted with dichloromethane (3×20 mL). Combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/acetate, 20/1 to 5/1) to give the targeted compound.

To a solution of **S5** (10 mmol) in 20 mL THF at -78 °C was dropwise added 10 mL (25 mmol) of 2.5 M solution of *n*-BuLi in hexanes. The resulting solution was stirred at -78 °C fot 1 h, and then a solution of 4.5 mL of chlorodiphenylphosphine (25 mmol) in 20 mL of THF was added dropwise during 15 mins. The reaction mixture was stirred for another 3 h at the same temperature, and then warmed at room temperature. After stirring for another 4 h, a solution of 1M aqueous NH₄Cl was added slowly until the reaction mixture became clear in both phases. The aqueous phase was extracted with dichloromethane (3×20 mL). Combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/acetate, 20/1 to 5/1) to give the targeted compound.

N,N'-((1R,2R)-cyclohexane-1,2-diyl)bis(1-(3-bromophenyl)methanimine) (S3a):

White solid, Yield: 89%. $[\alpha]_D^{25} = -194.1$ (c = 2.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 7.79 (s, 2H), 7.44 (dd, J = 7.8, 1.3 Hz, 4H), 7.17 (t, J =7.8 Hz, 2H), 3.44 – 3.33 (m, 2H), 1.93 – 1.73 (m, 6H),

1.48 (t, J = 9.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.40, 138.29, 133.23, 130.36, 129.99, 126.89, 122.82, 73.74, 32.82, 24.40. HRMS (ESI) calcd. for $C_{20}H_{20}Br_2N_2[M+H]^+$: 447.0066, Found: 447.0068.

N,N'-((1R,2R)-cyclohexane-1,2-diyl)bis(1-(4-bromophenyl)methanimine) (S3b):

White solid, Yield: 83%. $[\alpha]_D^{25} = -253.7$ (c = 2.37, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 2H), 7.49 – 7.38 (m, 8H), 3.44 – 3.28 (m, 2H), 1.93 – 1.73 (m, 6H), 1.48 (t, *J* = 9.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.73, 135.15, 131.68, 129.32, 124.69, 73.77, 32.81, 24.42.

HRMS (ESI) calcd. for $C_{20}H_{20}Br_2N_2[M+H]^+$: 447.0066, Found: 447.0066.

(2S,3S,5R,6R)-2,3-bis(3-bromophenyl)-1,4-dimethyldecahydroquinoxaline (S5a):

White solid, Yield: 78%. $[\alpha]_D^{25} = -104.1$ (c = 2.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 6.39 (m, 8H), 3.05 (s, 2H), 2.21 (d, *J* = 13.0 Hz, 2H), 2.07 (d, *J* = 8.9 Hz, 2H), 1.97 (s, 6H), 1.80 (d, *J* = 8.0 Hz, 2H), 1.38 – 1.14 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.19, 131.35, 130.06, 129.24, 127.66, 122.07, 75.75, 67.31, 39.90, 29.50, 24.92. HRMS (ESI) calcd. for C₂₂H₂₆Br₂N₂[M+H]⁺: 477.0536, Found: 447.0538.

(2S,3S,5R,6R)-2,3-bis(4-bromophenyl)-1,4-dimethyldecahydr oquinoxaline (S5b): White solid, Yield: 70%. $[\alpha]_D^{25} = -139.0$ (c = 2.23, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.60 - 6.37 (m, 8H), 3.05 (s, 2H), 2.21 (d, J = 13.0 Hz, 2H), 2.07 (d, J = 8.9 Hz, 2H), 1.97 (s, 6H), 1.80 (d, J = 8.0 Hz, 2H),1.39 – 1.14 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.19, 131.35, 130.06, 129.24, 127.66, 122.07, 75.75, 67.31, 39.90, 29.50, 24.92. HRMS (ESI) calcd. for $C_{22}H_{26}Br_2N_2[M+H]^+$: 477.0536, Found: 447.0537.

> (2S,3S,5R,6R)-2,3-bis(3-(diphenylphosphanyl)phenyl)-1,4-dimet hyldecahydroquinoxaline (L1a): White solid, Yield: 78%. $[\alpha]_D^{25} =$ -135.8 (c = 2.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 6.67 (m, 28H), 3.10 (s, 2H), 2.16 (d, J = 12.4 Hz, 2H), 2.03 (d, J = 10.0Hz, 2H), 1.90 (s, 6H), 1.75 (d, *J* = 8.1 Hz, 2H), 1.33 – 1.12 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.04, 137.46, 137.35, 133.87,

133.66, 133.47, 128.58, 128.50, 128.44, 128.38, 75.85, 67.58, 39.66, 29.54, 24.98. HRMS (ESI) calcd. for $C_{46}H_{46}N_2P_2[M+H]^+$: 689.3209, Found: 689.3211.

(2S,3S,5R,6R)-2,3-bis(4-(diphenylphosphanyl)phenyl)-1,4-dimethyldecahydroqui

PPh₂ PPh₂

L1a

noxaline (L1b): White solid, Yield: 68%. $\left[\alpha\right]_{D}^{25} = -288.5$ (c = 2.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 - 6.73(m, 28H), 3.14 (s, 2H), 2.21 (d, J = 11.6 Hz, 2H), 2.10 (s, 2H), 1.99 (s, 6H), 1.78 (d, J = 6.7 Hz, 2H), 1.40 – 1.28 (m, 3H), 1.24 - 1.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.40, 137.30, 137.11, 137.00, 133.83, 133.64, 133.44,

133.25, 128.66, 128.50, 128.43, 128.37, 76.06, 67.55, 39.95, 29.51, 24.96. HRMS (ESI) calcd. for $C_{46}H_{46}N_2P_2[M+H]^+$: 689.3209, Found: 689.3207.

MHz, CDCl₃) δ 8.00 (d, J = 6.2 Hz, 2H), 7.38 – 7.08 (m, 6H), 4.90 – 4.74 (m, 2H), 2.26 (d, J = 9.1 Hz, 2H), 2.15 (d, J = 12.2 Hz, 2H), 1.80 (s, 6H), 1.77 – 1.28 (m, 22H), 1.22 – 0.93 (m, 17H), 0.81 (dd, J = 26.1, 13.7 Hz, 4H), 0.37 (t, J = 11.1 Hz, 2H), 0.09 (q, J = 12.4 Hz, 2H). HRMS (ESI) calcd. for C₄₆H₇₀N₂P₂[M+H]⁺: 713.5087, Found: 713.5081.

3. General procedures for Pd-catalyzed asymmetric allylation alkylation to the formation of products 2a-2f, 3a-3j, 5a-5g and 6a-6g.

3.1 General procedure for Pd-catalyzed asymmetric allylic etherification of alcohols in the presence of (2*S*, 3*S*, 5*R*, 6*R*)-Fei-Phos.

A flame-dried Schlenk tube was charged with $[Pd(\eta^3-allyl)Cl]_2$ (4.5 mg, 0.0125 mmol, 2.5 mol%) and (2*S*,3*S*,5*R*,6*R*)-**Fei-Phos** (18.9 mg, 0.0275 mmol, 5.5 mol%) under N₂ atmosphere, and the mixture was dissolved in dry Toluene (2.0 mL). The solution was stirred at room temperature for 30 min and then adding (*E*)-1,3-diphenyl-2-propenyl acetate (0.5 mmol). The mixture solution was further stirred for 10 minutes at room temperature, and anhydrous K₂CO₃ (104 mg, 0.75 mmol) was added in to the vial followed by alcohol (0.75 mmol). The reaction mixture was stirred at room temperature for 12 h. The solution was quenched with EtOAc and saturated aqueous NH₄Cl solution. The mixture was then extracted twice with EtOAc (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by flash column chromatography to afford the product.

The product of catalytic asymmetric allylic etherification in the previous report.^[2]

(*R*,*E*)-(3-(2,2,2-trifluoroethoxy)prop-1-ene-1,3-diyl)dibenze ne (2a): Yellow oil, Yield: 98%. $[\alpha]_D^{25} = 6.5$ (c = 4.35, CHCl₃), 31% *ee* [determined by HPLC analysis using a Chiralcel OJ-H column; *n*-Hex / *i*-PrOH = 98:2, 1 mL/min, 254 nm; t_R (minor) = 16.65 min; t_R (major) =20.20 min]. ¹H NMR (400 MHz, CDCl3) δ 7.41 – 7.19 (m, 11H), 6.64 (d, J =

15.9 Hz, 1H), 6.27 (dd, J = 15.9, 7.2 Hz, 1H), 5.07 (d, J = 7.2 Hz, 1H), 3.90 - 3.79 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.60, 136.12, 132.90, 128.78, 128.66, 128.53, 128.32, 128.19, 126.91, 126.78, 124.21 (q, J = 278.9 Hz), 83.82, 65.51 (q, J = 34.2 Hz). HRMS (ESI) calcd. for C₁₇H₁₄F₃O[M+Na]⁺: 315.0967, Found: 315.0962.

(*R*,*E*)-(3-methoxyprop-1-ene-1,3-diyl)dibenzene (2c): Colorless oil, Yield: 95% . $[\alpha]_D^{25} = 7.3$ (c = 5.26, CHCl₃), 97% *ee* [determined by HPLC analysis using a Chiralcel OJ-H column; *n*-Hex / *i*-PrOH = 96:4, 1 mL/min, 254 nm; t_R (minor)

= 10.43 min; t_R (major) = 11.00 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.08 (m, 10H), 6.54 (d, J = 15.9 Hz, 1H), 6.19 (dd, J = 15.9, 7.0 Hz, 1H), 4.70 (d, J = 7.0 Hz, 1H), 3.28 (d, J = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.12, 136.68, 131.51, 130.25, 128.56, 127.75, 126.90, 126.64, 84.36, 56.47. HRMS (ESI) calcd. for $C_{16}H_{16}O[M+Na]^+$: 247.1093, Found: 247.0944.

3.2 General procedure for Pd-catalyzed asymmetric allylic alkylation of cyanoacetates in the presence of (2*S*,3*S*,5*R*,6*R*)-Fei-Phos.

A flame-dried Schlenk tube was charged with $[Pd(\eta^3-allyl)Cl]_2$ (4.5 mg, 0.0125 mmol, 2.5 mol%) and (2*S*,3*S*,5*R*,6*R*)-**Fei-Phos** (18.9 mg, 0.0275 mmol, 5.5 mol%) and sodium ascorbate (5.4 mg, 0.0275 mmol, 5.5mol%) under an N₂ atmosphere, and the mixture was dissolved in dry CHCl₃ (2.0 mL). The solution was stirred at -20 °C for 30 min and then (*E*)-1,3-diphenyl-2-propenyl acetate (0.5 mmol), cyanoacetate (0.75 mmol), BSA (1.5 mmol) was added to the above solution. The reaction mixture was stirred at -20 °C for 30 min. The solution was quenched with EtOAc and saturated aqueous NH₄Cl solution. The mixture was then extracted twice with EtOAc (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by flash column chromatography to afford the alkylated product.

(*S*,*E*)-2-(1,3-diphenylallyl)malononitrile (3a): Light yellow oil, Yield: 72%. $[\alpha]_D^{25} = 24.2$ (c = 3.33, CHCl₃), 92% *ee* [determined by HPLC analysis using a Chiralcel OJ-H column; *n*-Hex / *i*-PrOH = 70:30, 1 mL/min, 254 nm; t_R (minor) =17.85

min; t_R (major) =20.00 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.25 (m, 10H), 6.71 (d, J = 15.7 Hz, 1H), 6.47 (dd, J = 15.7, 8.0 Hz, 1H), 4.15 – 3.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 135.09, 134.34, 134.01, 127.93, 127.45, 127.23, 127.12, 126.21, 125.29, 122.45, 110.19, 110.11, 48.30, 28.70. HRMS (ESI) calcd. for $C_{18}H_{14}N_2[M+Na]^+$: 281.1049, Found: 281.1039.

(E)-ethyl-2-cyano-3,5-diphenylpent-4-enoate(3b):Colorless oil, Yield: 92%. $[\alpha]_D^{25} = 19.2$ (c = 7.22, CHCl₃), 90%*ee*, *dr*>99:1 [determined by HPLC analysis using a Chiralcel

IB column; *n*-Hex / *i*-PrOH = 99:1, 0.5 mL/min, 254 nm; t_R

(minor) = 29.93 min; t_R (major) = 34.36 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.20 (m, 10H), 6.59 (dd, J = 15.7, 11.5 Hz, 1H), 6.48 (ddd, J = 31.0, 15.7, 8.3 Hz, 1H), 4.24 (dd, J = 8.2, 6.5 Hz, 1H), 4.18 – 4.10 (m, 2H), 3.90 (dd, J = 15.4, 7.0 Hz, 1H), 1.16 (td, J = 7.1, 3.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.95, 164.91, 138.80,

138.12, 136.23, 136.16, 134.35, 133.28, 129.09, 129.06, 128.68, 128.66, 128.19, 128.15, 128.03, 127.72, 127.10, 126.68, 126.58, 125.75, 115.49, 62.93, 62.88, 49.47, 49.22, 44.88, 44.55, 13.97.

(S,E)-3-(1,3-diphenylallyl)pentane-2,4-dione (3c): White solid, Yield: 92%. $[\alpha]_D^{25} = 4.7$ (c = 7.06, CHCl₃), 94% ee [determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 95:5, 1 mL/min, 254 nm; t_R (minor) 3c $= 10.73 \text{ min}; t_{R} \text{ (major)} = 11.92 \text{ min}].$ ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.11 (m, 3H), 6.42 (d, J = 15.9 Hz, 1H), 6.19 (ddd, J = 15.8, 4.7, 3.1 Hz, 1H), 4.51 - 4.14 (m, 1H), 2.24 (s, 1H), 1.91 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.74, 202.58, 140.18, 136.63, 131.72, 129.36, 129.02, 128.53, 127.96, 127.71, 127.26, 126.38, 74.55, 49.16, 29.97, 29.71. HRMS (ESI) calcd. for $C_{20}H_{20}O_2[M+Na]^+$: 315.1356, Found: 315.1340.

diethyl (*S*,*E*)-2-(1,3-diphenylallyl)malonate (3d): Yield: 90%. 94% ee [determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 90:10, 1 mL/min, 254 nm; t_R (minor) =9.67 min; t_R (major) =12.88 min].¹H NMR (400

MHz, CDCl₃) δ 7.41 – 7.11 (m, 10H), 6.47 (d, J = 15.8 Hz,

1H), 6.34 (dd, J = 15.7, 8.5 Hz, 1H), 4.26 (dd, J = 10.9, 8.5 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.97 (qd, J = 7.1, 1.4 Hz, 2H), 3.92 (d, J = 10.9 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.85, 167.43, 140.36, 136.90, 131.71, 129.41, 128.65, 128.47, 128.02, 127.52, 127.09, 126.37, 61.57, 61.36, 57.82, 49.22, 14.14, 13.79.

(E)-2-cyano-3,5-diphenyl-pent-4-enoate methyl (3e): Colorless oil, Yield: 86% . $[\alpha]_D^{25} = 26.5$ (c = 5.23 CHCl₃), 91% ee, dr>99:1 [determined by HPLC analysis using a Chiralcel IB column; *n*-Hex / *i*-PrOH = 99:1, 0.5 mL/min, 254 nm; t_R

(minor) = 40.54 min; t_R (major) =46.56 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.21 (m, 10H), 6.59 (dd, J = 15.8, 10.0 Hz, 1H), 6.48 (ddd, J = 31.9, 15.7, 8.3 Hz, 1H), 4.27 – 4.17 (m, 1H), 3.93 (dd, J = 16.8, 6.8 Hz, 1H), 3.71 (d, J = 7.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.42, 165.39, 138.82, 138.08, 136.26, 136.19, 134.41, 133.33, 129.11, 129.07, 128.68, 128.65, 128.21, 128.16, 128.05, 127.98, 127.66, 127.05, 126.69, 126.60, 125.69, 115.33, 115.27, 53.49, 53.41, 49.37, 49.09, 44.75, 44.43.

isopropyl (*E*)-2-cyano-3,5-diphenyl-pent-4-enoate (3f): Light yellow oil, Yield: 83%. $[\alpha]_D^{25} = 19.2$ (c = 4.47 CHCl₃), 90%/92% *ee*, 54:46 *dr* [determined by HPLC analysis using a Chiralcel IC column; *n*-Hex / *i*-PrOH =

99:1, 0.5 mL/min, 254 nm; $t_R = 51.30$ min, $t_R = 54.49$ min, $t_R = 59.28$ min, $t_R = 85.69$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.23 (m, 10H), 6.58 (dd, J = 15.7, 12.4 Hz, 1H), 6.54 – 6.39 (m, 1H), 4.97 (hept, J = 6.2 Hz, 1H), 4.25 – 4.13 (m, 1H), 3.87 (dd, J = 13.3, 7.2 Hz, 1H), 1.19 – 1.08 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.48, 164.44, 138.78, 138.19, 136.23, 136.16, 134.28, 133.25, 129.07, 129.05, 128.68, 128.66, 128.16, 128.13, 128.06, 128.01, 127.78, 127.18, 126.67, 126.58, 125.87, 115.59, 71.06, 49.55, 49.36, 45.00, 44.68, 21.55, 21.53, 21.48, 21.42.

butyl (*E*)-2-cyano-3,5-diphenyl-pent-4-enoate (3g): Light yellow oil, Yield: 84%. $[\alpha]_D^{25} = 18.4$ (c = 4.65 CHCl₃), 92%/88% *ee*, 54:46 *dr* [determined by HPLC analysis using a Chiralcel IC column; *n*-Hex / *i*-PrOH

= 99:1, 0.5 mL/min, 254 nm; t_R = 50.27 min, t_R = 53.74 min, t_R = 64.58 min, t_R = 83.84 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.22 (m, 10H), 6.59 (dd, *J* = 15.8, 10.3 Hz, 1H), 6.48 (ddd, *J* = 31.7, 15.7, 8.2 Hz, 1H), 4.26 – 4.16 (m, 1H), 4.09 (dd, *J* = 6.0, 4.6 Hz, 1H), 3.91 (dd, *J* = 14.0, 6.9 Hz, 1H), 1.51 (dq, *J* = 13.7, 6.9 Hz, 2H), 1.35 – 1.19 (m, 2H), 0.83 (td, *J* = 7.3, 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.02, 164.98,

138.86, 138.17, 136.25, 136.19, 134.36, 133.29, 129.07, 129.03, 128.65, 128.62, 128.11, 128.02, 127.6, 127.14, 126.67, 126.58, 125.72, 115.41, 66.71, 66.66, 49.46, 49.22, 44.88, 44.56, 30.36, 29.71, 18.92, 13.52.

tert-butyl (*E*)-2-cyano-3,5-diphenyl-pent-4-enoate (3h): Light yellow oil, Yield: 80%. $[\alpha]_D^{25} = 22.1$ (c = 2.26 CHCl₃), 94%/94% *ee*, 54:46 *dr* [determined by HPLC analysis using a Chiralcel IC column; *n*-Hex / *i*-PrOH =

99:1, 0.5 mL/min, 254 nm; $t_R = 34.00$ min, $t_R = 36.30$ min, $t_R = 43.35$ min, $t_R = 52.63$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.16 (m, 10H), 6.57 (t, J = 15.2 Hz, 1H), 6.46 (ddd, J = 28.4, 15.7, 8.3 Hz, 1H), 4.23 – 4.07 (m, 1H), 3.81 (dd, J = 12.1, 7.3 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.84, 163.78, 138.88, 138.32, 136.28, 136.22, 134.13, 133.10, 129.02, 128.98, 128.67, 128.66, 128.14, 128.08, 127.94, 127.83, 127.44, 126.64, 126.56, 126.13, 115.88, 84.33, 49.51, 49.44, 45.61, 45.30, 27.72, 27.69.

benzyl (*E*)-2-cyano-3,5-diphenyl-pent-4-enoate (3i): Light yellow oil, Yield: 89%. $[\alpha]_D^{25} = 16.9$ (c = 6.67 CHCl₃), 90%/92% *ee*, 55:45 *dr* [determined by HPLC analysis using a Chiralcel IC column; *n*-Hex /

i-PrOH = 99:1, 0.5 mL/min, 254 nm; $t_R = 72.33$ min, $t_R = 87.46$ min, $t_R = 103.01$ min, $t_R = 113.32$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.15 (m, 15H), 6.55 – 6.50 (m, 1H), 6.50 – 6.35 (m, 1H), 5.15 – 5.07 (m, 2H), 4.20 (dt, J = 16.1, 7.2 Hz, 1H), 3.94 (dd, J = 12.7, 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.86, 164.83, 138.69, 137.99, 136.14, 136.08, 134.47, 134.36, 134.30, 133.35, 129.12, 129.11, 128.78, 128.73, 128.70, 128.68, 128.65, 128.62, 128.55, 128.20, 128.16, 128.15, 128.05, 127.96, 127.68, 126.91, 126.73, 126.63, 125.49, 115.28, 115.26, 68.48, 49.52, 49.19, 44.93, 44.57.

cyclohexyl (*E*)-2-cyano-3,5-diphenyl-pent-4-enoate (3j): White solid, Yield: 88%. $[\alpha]_D^{25} = 27.9$ (c = 6.93 CHCl₃), 94%/94% *ee*, 54:46 *dr* [determined by HPLC analysis using a Chiralcel IC column; *n*-Hex / *i*-PrOH =

99:1, 0.5 mL/min, 254 nm; $t_R = 47.99$ min, $t_R = 51.77$ min, $t_R = 62.21$ min, $t_R = 79.37$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 9H), 7.26 – 7.21 (m, 1H), 6.60 (d, J = 15.8 Hz, 1H), 6.51 (dd, J = 16.2, 8.7 Hz, 1H), 4.84 – 4.69 (m, 1H), 4.23 (t, J = 7.3 Hz, 1H), 3.87 (d, J = 7.3 Hz, 1H), 1.74 – 1.26 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 164.36, 138.88, 136.28, 134.27, 129.03, 128.60, 128.06, 127.95, 127.74, 126.63, 125.93, 115.53, 75.56, 49.29, 45.01, 31.16, 31.07, 25.15, 23.31. HRMS (ESI) calcd. for C₂₄H₂₅NO₂[M+Na]: 382.1778, Found: 382.1785.

3.3 General procedure for Pd-catalyzed asymmetric allylic alkylation of indoles in the presence of (2*S*,3*S*,5*R*,6*R*)-Fei-Phos.

A flame-dried Schlenk tube was charged with $[Pd(\eta^3-allyl)Cl]_2$ (4.5 mg, 0.0125 mmol, 2.5 mol%) and (2S,3S,5R,6R)-Fei-Phos (18.9 mg, 0.0275 mmol, 5.5 mol%) under an N₂ atmosphere, and the mixture was dissolved in dry toluene (2.0 mL). The solution stirred room temperature for 30 min then was at and adding (E)-1,3-diphenyl-2-propenyl acetate 1 (126 mg, 0.5 mmol). The mixture solution was further stirred for 10 minutes at room temperature, and anhydrous K₂CO₃ (207 mg, 1.5 mmol) was added in to the vial followed by indoles 4 (1.5 mmol). The reaction mixture was stirred at room temperature for 12 h. The solution was quenched with EtOAc and saturated aqueous NH₄Cl solution. The mixture was then extracted twice with EtOAc (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo.

The crude product was purified by flash column chromatography to afford the alkylated product **5**. And the product **5** was directly conversed to *N*-Boc-protected derivatives **6**.

3.4 The preparation of N-Boc-protected indoles 6

To a solution of **5** (0.1 mmol) and DMAP (0.6 mg, 0.005 mmol) in CH_2Cl_2 (2 mL) was added (Boc)₂O (32.7 mg, 0.15 mmol), and the solution was stirred for 2 h at room temperature. The resulting mixture was evaporated under reduced pressure and purified by flash column chromatography to afford the *N*-Boc-protected alkylated indole **6**. Enantiomeric excess was determined on an aliquot before the addition of the acetic anhydride by HPLC with chiral stationary phase.

Ph (*R,E*)-3-(1,3-diphenylallyl)-1H-indole (5a): White solid, 124-127 °C. 82% yield. $[\alpha]_D^{25} = -38.3$ (c = 0.6, CDCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (bs, 1H), 7.48-7.33 (m, 9H), 7.32-7.20 (m, 3H), 7.15-7.07 (m, 1H), 6.82 (d, J = 3.75Hz, 1H), 6.85-6.75 (m, 1H), 6.56-6.48 (m, 1H), 5.23-5.15 (m, 1H). ¹³C NMR (125 MHz, CDCl₃)

 δ 143.5, 137.6, 136.7, 132.7, 130.6, 128.6, 127.3, 126.9, 126.5, 126.4, 122.7, 122.1, 119.9, 119.5, 118.7, 111.2, 46.3. IR (cm⁻¹, neat) 3384.5, 3022.1, 2852.2, 1597.7,

5b

1489.4, 1449.4, 1419.2, 1335.1, 1220.5, 1007.5, 962.9, 742.3, 694.3. GC-MS (EI): calcd for C₂₃H₁₉N [M]: 309.1; Found: 309.2, 254.1, 232.1, 206.1, 178.1, 152.1, 115.1.

(*R*,*E*)-3-(1,3-diphenylallyl)-2-methyl-1H-indole (5b): Yellow solid,

mp: 39-40 °C. 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (bs, 1H), 7.49-7.44 (m, 6H), 7.39-7.34 (m, 5H), 7.33-7.30 (m, 1H), 7.19-7.15 (m, 1H), 7.10-7.05 (m, 1H), 6.94 (dd, J = 7.0 Hz, 32.0 Hz, 1H), 6.52 (d, J = 31.5 Hz, 1H), 5.24 (d, J = 7.5 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 137.7, 135.5, 132.3, 130.7, 129.8, 129.1, 128.6, 128.4, 128.3, 128.0, 127.2, 126.4, 126.2, 120.9, 119.4, 119.3, 112.8, 110.5, 45.2, 12.4. IR (cm⁻¹, neat) 3338.43, 3058.2, 3027.6, 2924.7, 1685.1, 1616.4, 1491.1, 1450.0, 1264.4, 968.7, 734.1, 696.9.

7.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.1, 137.4, 135.3, 132.2, 130.9, 128.6, 128.5, 127.5, 126.7, 126.5, 125.1, 124.0, 122.3, 118.3, 112.8, 46.0. IR (cm⁻¹, neat) 3420.4, 3024.5, 2921.4, 2851.0, 1693.0, 1492.4, 1449.1, 1213.5, 1094.7, 1028.4, 882.2, 794.9, 695.3.

(*R*,*E*)-3-(1,3-diphenylallyl)-2-phenyl-1H-indole (5e): Yellow oil. 85% yield. $[\alpha]_D^{25} = -36.4$ (c = 0.7, CDCl₃). The product 5e was directly conversed to *N*-Boc-protected derivatives 6e.

5e

(*R*,*E*)-5-chloro-3-(1,3-diphenylallyl)-1H-indole (5f): Yellow oil. 80% yield. $[\alpha]_D^{25} = -28.9$ (c = 0.8, CDCl₃). The product 5f was directly conversed to *N*-Boc-protected derivatives 6f.

Boc

6a

(*R*,*E*)-3-(1,3-diphenylallyl)-7-methyl-1H-indole (5g): Yellow oil. 80% yield. $[\alpha]_D^{25} = -14.1$ (*c* = 0.5, CDCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (bs, 1H), 7.52-7.47 (m, 4H), 7.47-7.31(m, 7H), 7.14-7.09 (m, 2H), 6.93 (d, J = 1.5 Hz, 1H), 6.88 (dd, J = 7.5 Hz, 16.0 Hz, 1H), 6.59 (d, J = 15.5 Hz, 1H), 5.26 (d, J = 7.5 Hz, 1H),

2.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 137.7, 136.4, 132.8, 130.7, 128.7, 128.6, 127.4, 126.6, 126.5, 122.7, 122.6, 120.4, 119.8, 119.2, 117.8, 46.5, 16.7. IR (cm⁻¹, neat) 3427.3, 3026.1, 2964.1, 2964.2, 2921.2, 2853.4, 2245.7, 1598.5, 1493.3, 1449.4, 1340.5, 1029.1, 905.7, 786.8, 726.5, 695.6.

(*R*,*E*)-tert-butyl 3-(1,3-diphenylallyl)-1H-indole-1-carboxylate Ph (6a):

White solid, 56-58 °C. 79% yield, 96% *ee*. $[\alpha]_D^{25} = -31.7$ (c = 1.2, CDCl₃). HPLC conditions: chiralcel OD-H, n-hexane/2-propanol =

99/1, 0.7 mL/min, 254 nm. minor enantiomer: $t_R = 7.53$ min (S); major enantiomer: $t_R = 8.51$ min (R). ¹H NMR (500 MHz, CDCl₃) δ 8.33-8.21 (m, 1H), 7.55-7.52 (m, 1H), 7.47-7.28 (m, 12H), 7.25-7.21(m, 1H), 6.82 (dd, J=7.5 Hz, 16.0 Hz, 1H), 6.56 (d, J = 15.5 Hz, 1H), 5.15 (d, J = 7.0 Hz, 1H), 1.77 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 150.0, 142.2, 137.3, 131.4, 131.3, 130.0, 129.1, 128.7, 128.6, 128.5, 127.5, 126.8, 126.5, 124.5, 123.9, 122.6, 120.3, 115.4, 83.8, 46.1, 28.3. IR (cm⁻¹, neat) 3057.4, 2976.4, 2930.4, 1727.7, 1599.7, 1450.5, 1368.2, 1308.0, 1254.4, 1150.4, 1074.1, 966.8, 852.4, 742.8. GC-MS (EI): calcd for C₂₈H₂₇NO₂ [M]: 409.2; Found: 309.2, 268.0, 232.1, 204.1, 165.0, 130.1, 91.0.

(*R*,*E*)-tert-butyl

3-(1,3-diphenylallyl)-2-methyl-1H-indole-1-carboxylate (6b): White solid, mp: 130-132 °C. 75% yield, 99% *ee*. $[\alpha]_D^{25} = -8.5$ (*c* = 0.6, CDCl₃). HPLC conditions: chiralcel OJ-H, n-hexane/2-propanol = 80/20, 0.3 mL/min, 254 nm. major enantiomer: t_R = 20.48 min (R);

minor enantiomer: $t_R = 26.93 \text{ min}$ (S). ¹H NMR (500 MHz, CDCl₃) δ 8.23-8.19 (m, 1H), 7.46-7.42 (m, 2H), 7.42-7.38 (m, 2H), 7.37-7.32 (m, 5H), 7.29-7.25 (m, 3H), 7.16-7.11(m, 1H), 6.87 (dd, J=7.5 Hz, 16.0 Hz, 1H), 6.53 (d, J = 16.0 Hz, 1H), 5.25 (d, J = 7.5 Hz, 1H), 2.68 (s, 3H), 1.75 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 142.5, 137.3, 136.1, 134.1, 131.6, 130.7, 129.0, 128.6, 128.4, 128.1, 127.3, 126.4, 126.3, 123.2, 122.3, 119.6, 119.3, 115.5, 83.7, 44.6, 28.4, 14.43. IR (cm⁻¹, neat) 3025.6, 2976.2, 2929.7, 1727.3, 1599.2, 1492.8, 1455.6, 1392.8, 1365.0, 1116.0, 964.5, 842.0, 743.6, 694.9. GC-MS (EI): calcd for C₂₉H₂₉NO₂ [M]: 423.2; Found: 323.2, 291.1, 246.1, 218.1, 191.1, 144.1, 116.1.

(*R*,*E*)-tert-butyl-5-bromo-3-(1,3-diphenylallyl)-1H-indole-1-c arboxylate (6c): White solid, 152-153 °C. 78% yield, 94% *ee*. $[\alpha]_D^{25} = -28.8 \ (c = 0.8, CDCl_3)$. HPLC conditions: chiralcel OJ-H, n-hexane/2-propanol = 99/1, 0.5 mL/min, 254 nm. minor enantiomer: $t_R = 11.75 \text{ min}$ (S); major enantiomer: $t_R = 12.77 \text{ min}$

(R). ¹H NMR (500 MHz, CDCl₃) δ 8.09-7.95(m, 1H), 7.51-7.47 (m, 1H), 7.44-7.37 (m, 4H), 7.37-7.28 (m, 7H), 7.27-7.22(m, 1H), 6.71-6.64 (m, 1H), 6.44 (d, J = 15.5 Hz, 1H), 5.01 (d, J = 7.5 Hz, 1H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 149.5, 141.6, 137.1, 131.6, 131.5, 130.8, 128.7, 128.6, 128.4, 127.5, 127.3, 126.9, 126.4, 124.9, 122.6, 122.4, 116.7, 115.9, 84.2, 45.7, 28.4. IR (cm⁻¹, neat) 3025.8, 2977.0, 1732.1, 1600.1, 1447.4, 1367.1, 1275.5, 1150.5, 1028.5, 786.5, 695.7. GC-MS (EI): calcd for C₂₈H₂₆BrNO₂ [M]: 487.1; Found: 389.1, 310.0, 284.0, 255.1, 230.1, 191.0, 154.0, 115.0.

 $t_R = 11.89 \text{ min}$ (R). ¹H NMR (500 MHz, CDCl₃) δ 8.03(s, 1H), 7.43-7.30 (m, 9H), 7.30-7.22 (m, 2H), 6.96-6.91 (m, 1H), 6.83-6.79 (m, 1H), 6.75-6.68 (m, 1H), 6.48 (d, J = 15.5 Hz, 1H), 5.03 (d, J = 7.0 Hz, 1H), 3.74 (s, 3H), 1.69 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 149.9, 142.0, 137.2, 131.4, 131.1, 128.6, 128.5, 128.4, 127.4, 126.7, 126.4, 124.5, 122.8, 115.9, 112.8, 103.1, 83.5, 55.6, 46.0, 28.3. IR (cm⁻¹, neat) 2974.3, 2010.0, 1730.7, 1474.7, 1445.0, 1372.0, 1253.0, 1150.8, 1072.6, 968.6, 917.8, 699.8. GC-MS (EI): calcd for C₂₉H₂₉NO₃ [M]: 439.2; Found: 339.2, 308.2, 262.1, 218.1, 191.0, 160.0, 115.0.

Ph

(*R,E*)-tert-butyl-3-(1,3-diphenylallyl)-2-phenyl-1H-indole-1-carb oxylate (6e): White solid, mp: 153-155 °C. 78% yield, 95% *ee.* $[\alpha]_D^{25} = -22.2$ (c = 0.87, CDCl₃). HPLC conditions: chiralcel AD-H, n-hexane/2-propanol = 99/1, 1.0 mL/min, 254 nm. minor nantiomer:

6e $t_R = 3.74 \text{ min (S)}$; major enantiomer: $t_R = 9.16 \text{ min (R)}$. ¹H NMR (500 MHz, CDCl₃) δ 8.35-8.30 (m, 1H), 7.49-7.39 (m, 5H), 7.38-7.26 (m, 10H), 7.25-7.18 (m, 2H), 7.17-7.11 (m, 1H), 6.83-6.75 (m, 1H), 6.35 (d, J = 16.0 Hz, 1H), 4.89 (d, J = 5.5 Hz, 1H), 1.28-1.25 (m, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 142.6, 137.4, 137.0, 136.6, 134.3, 131.6, 130.7, 130.1, 128.5, 128.3, 128.1, 128.0, 127.8, 127.3, 126.4, 126.3, 124.3, 122.6, 121.3, 120.9, 115.4, 83.1, 44.9, 27.5. IR (cm⁻¹, neat) 3027.0, 2921.2, 2850.8, 1719.4, 1454.0, 1325.7, 1150.1, 1027.1, 964.9, 830.7, 748.1, 693.7.

(R). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.46-7.26 (m, 13H), 6.70 (dd, J = 7.5 Hz, 16.0 Hz, H), 6.47 (d, J = 15.5 Hz, 1H), 5.03 (d, J = 7.0 Hz, 1H), 1.70 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 141.7, 137.1, 131.6, 131.1, 130.8, 128.8, 128.6, 128.2, 127.5, 127.0, 126.5, 125.1, 124.6, 122.5, 119.7, 116.4, 84.2, 45.8, 28.2. IR (cm⁻¹, neat) 3027.4, 2976.4, 2927.4, 1735.1, 1491.7, 1332.6, 1243.1, 1030.5, 842.1, 754.5, 694.6.

(*R*,*E*)-tert-butyl-3-(1,3-diphenylallyl)-7-methyl-1H-indole-1-carbo xylate (6g): White solid, mp: 123-125 °C. 76% yield, 91% *ee*. HPLC conditions: chiralcel OD-H, n-hexane/2-propanol = 97/3, 0.7 mL/min, 254 nm. minor nantiomer: $t_R = 6.22 \text{ min (S)}$; major enantiomer: $t_R = 6.73 \text{ min (R)}$. ¹H NMR (500 MHz, CDCl₃) δ 7.51-7.33 (m, 12H),

7.24-7.18 (m, 2H), 6.85 (dd, J = 7.5 Hz, 16.0 Hz, H), 6.59 (d, J = 15.5 Hz, 1H), 5.17 (d, J = 7.5 Hz, 1H), 2.80 (s, 3H), 1.75 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 149.9, 142.3, 137.4, 135.6, 131.5, 131.3, 128.7, 128.6, 127.9, 127.5, 126.8, 126.2, 125.5, 123.1, 122.8, 117.9, 83.5, 28.2, 22.4.

3-cinnamyl-1H-indole (6h), white solid, Yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.37 – 7.08 (m, 8H), 6.53 (d, *J* = 15.9 Hz, 1H), 6.45 (dt, *J* = 15.7, 6.2 Hz, 1H), 3.67 (d, *J* = 6.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.09, 135.80, 129.79, 128.65, 127.83, 126.82, 126.29, 125.46, 121.40, 121.12,

118.70, 118.47, 113.96, 110.45, 76.70, 76.38, 76.06, 28.31. HRMS (ESI) calcd. for $C_{17}H_{16}N[M+H]^+$: 234.1277, Found: 234.1125.

3.5 General procedures for Pd-catalyzed asymmetric allylic amination of aniline

A flame-dried Schlenk tube was charged with $[Pd(\eta^3-allyl)Cl]_2$ (4.5 mg, 0.0125 mmol, 2.5 mol%) and (2*S*,3*S*,5*R*,6*R*)-Fei-Phos (18.9 mg, 0.0275 mmol, 5.5 mol%) under an N₂ atmosphere, and the mixture was dissolved in dry *N*,*N*-dimethylacetamide (2.0 mL). The solution was stirred at room temperature for 30 min and then adding (*E*)-1,3-diphenyl-2-propenyl acetate (0.5 mmol), The mixture solution was further stirred for 10 minutes at room temperature, and anhydrous K₃PO₄ (160 mg, 0.75 mmol) was added in to the vial followed by aniline (0.75 mmol). The reaction mixture was stirred at room temperature for 2 h. The solution was quenched with EtOAc and saturated aqueous NH₄Cl solution. The mixture was then extracted twice with EtOAc (20×3 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by flash column chromatography to afford the product **8**.

(*R*)-*N*-(1,3-diphenylallyl)aniline (8a), yellow oil, Yield: 97%. $[\alpha]_D^{25} = -31.3$ (c = 5.25, CHCl₃), 83% *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 95:5, 1.0 mL/min, 254 nm; t_R (major) = 10.00 min; t_R (minor)

=12.23 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 7.1 Hz, 2H), 7.27 – 7.01 (m, 10H), 6.61 (t, *J* = 7.3 Hz, 1H), 6.55–6.49 (m, 3H), 6.29 (dd, *J* = 15.8, 6.2 Hz, 1H), 4.98 (d, *J* = 6.2 Hz, 1H), 4.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.08, 142.00, 136.66, 131.18, 130.67, 129.14, 128.81, 128.53, 127.66, 127.53, 127.23, 126.52, 117.87, 113.77, 60.77. IR (neat, cm⁻¹) 3408, 3081, 3054, 3028, 1600, 1501, 1449, 1426, 1384, 1313, 1260, 1179, 967, 746, 692. HRMS (ESI) calcd. for C₂₁H₁₉N[M+H]⁺: 286.1590, Found:286.1621.

(*R*)-N-(1,3-diphenylallyl)-2-methoxyaniline (8b), white solid, Yield: 95%. $[\alpha]_D^{25}$ =-29.6(c = 70.6, CHCl₃), 77% *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 98:2, 1.0 mL/min, 254 nm; t_R (minor) = 7.96 min; t_R (major) =9.12 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, *J* = 5.7 Hz, 2H), 7.38 – 7.14 (m, 9H), 6.80 – 6.72 (m, 2H), 6.70 – 6.55 (m, 3H), 6.47 – 6.38 (m, 1H), 5.08 (d, *J* = 5.8 Hz, 1H), 4.90 (s, 1H), 3.84 (d, *J* = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.04, 142.24, 137.05, 136.86, 131.11, 131.05, 128.82, 128.57, 127.66, 127.48, 127.31, 126.61, 121.26, 117.14, 111.65, 109.52, 60.73, 55.50. IR (neat, cm⁻¹) 3434, 3024, 1637, 1600, 1507, 1447, 1421, 1236, 1219, 1178, 1139, 1048, 1024, 967, 741, 698. HRMS (ESI) calcd. for C₂₂H₂₁NO[M+H]⁺: 316.1696, Found: 316.1703.

(*R*)-N-(1,3-diphenylallyl)-2-ethoxyaniline (8c), orange oil, Yield: 97%. $[\alpha]_D^{25} = -33.9(c = 73.3, CHCl_3), 81%$ *ee*[determined by HPLC analysis using a Chiralcel AD-H column;*n*-Hex /*i* $-PrOH = 95:5, 1.0 mL/min, 254 nm; t_R (major) = 12.98 min; t_R (minor) =18.45 min].¹H NMR (400 MHz, CDCl_3) <math>\delta$ 7.43 (d, J=7.5 Hz, 2H), 7.36 – 7.17 (m, 9H), 6.72 (d, J = 8.7 Hz, 2H), 6.64 – 6.57 (m, 3H), 6.40 (dd, J = 15.8, 6.3 Hz, 1H), 5.00 (d, J = 6.3 Hz, 1H), 3.92 (q, J = 6.9 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl_3) δ 151.97, 142.04, 140.82, 136.74, 131.24, 130.87, 128.81, 128.55, 128.30, 127.66, 127.55, 127.34, 126.77, 126.56, 115.66, 115.52, 64.06, 62.06, 15.01. IR (neat, cm⁻¹) 3545, 3057, 3026, 1619, 1509, 1478, 1449, 1385, 1235, 1117, 1049, 921, 817, 745, 699. HRMS (ESI) calcd. for C₂₃H₂₃NO[M+Na]⁺: 352.1672, Found:352.1693.

(*R*)-2-((1,3-diphenylallyl)amino)benzonitrile (8d), white solid, Yield: 86%. $[\alpha]_D^{25} =$ -44.7(c = 58.5, CHCl₃), 85% *ee*[determined by HPLC analysis using a Chiralcel OJ-H column; *n*-Hex / *i*-PrOH = 95:5, 1.0 mL/min, 254 nm; t_R (major) = 20.26 min; t_R (minor) =22.88 min].¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 7H), 7.37 – 7.24 (m, 5H), 6.76 – 6.58 (m, 3H), 6.42 (dd, *J* = 15.9, 6.2 Hz, 1H), 5.23 (d, *J* = 6.1 Hz, 1H), 5.06 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.10, 140.57, 136.15, 134.12, 132.70, 132.08, 129.12, 129.07, 128.60, 128.01, 127.98, 127.01, 126.62, 117.13, 112.18, 96.41, 59.99. IR (neat, cm⁻¹) 3406, 3333, 3081, 3025, 2854, 2213, 1633, 1575, 1506,

1450, 1321, 1274, 961, 745, 699. HRMS (ESI) calcd. for $C_{22}H_{18}N_2[M+Na]^+$: 333.1362, Found:333.1368.

(*R*)-3-chloro-N-(1,3-diphenylallyl)aniline (**8e**), yellow oil, Yield: 92%. $[\alpha]_D^{25}$ =-34.4(c = 74.3, CHCl₃), 83% *ee*[determined by HPLC analysis using a Chiralcel OD-H column; *n*-Hex / *i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t_R (minor) = 12.52 min; t_R (major) =21.00 min].¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.21 (m, 13H), 7.02 (t, J = 8.0 Hz, 1H), 6.68 – 6.56 (m, 3H), 6.49 (dd, J = 8.1, 1.8 Hz, 1H), 6.36 (dd, J = 15.8, 6.2 Hz, 1H), 5.05 (d, J = 6.2 Hz, 1H), 4.33 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.30, 141.53, 136.56, 134.94, 131.52, 130.18, 130.10, 128.98, 128.64, 127.86, 127.80, 127.24, 126.62, 117.78, 113.54, 111.90, 60.53. IR (neat, cm⁻¹) 3416, 3059, 3026, 2960, 1598, 1494, 1450, 1417, 1322, 1279, 1166, 1091, 1074, 1028, 966, 913, 838, 746, 698. HRMS (ESI) calcd. for C₂₁H₁₈ClN[M+H]⁺: 320.1201, Found: 320.1200.

(*R*)-N-(1,3-diphenylallyl)-4-methoxyaniline (8f), white solid, Yield: 95%. $[\alpha]_D^{25} = -35.9(c = 68.5, CHCl_3)$, 81% *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 95:5, 1.0 mL/min, 254 nm; t_R (major) = 15.19 min; t_R (minor) = 20.84 min].¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 2H), 7.36 –

7.15 (m, 8H), 6.72 (d, J = 6.5 Hz, 2H), 6.63 – 6.55 (m, 3H), 6.37 (dd, J = 15.8, 6.2 Hz, 1H), 4.99 (d, J = 5.4 Hz, 1H), 4.00 (s, 1H), 3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.42$, 142.27, 141.30, 136.74, 131.03, 128.79, 128.54, 127.63, 127.47, 127.24, 126.52, 115.15, 114.80, 61.71, 55.73. IR (neat, cm⁻¹) 3440, 3024, 2835, 1636, 1509, 1448, 1312, 1248, 1180, 1032, 964, 825, 745, 697. HRMS (ESI) calcd. for C₂₂H₂₁NO[M+Na]⁺: 338.1515, Found:338.1524.

(*R*)-N-(1,3-diphenyallyl)-4-nitroaniline (8g), yellow solid, Yield: 93%. $[\alpha]_D^{25} = -74.1(c = 70.4, CHCl_3), 86\%$ *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 80:20, 1.0 mL/min, 254 nm; t_R (major) = 11.94 min; t_R (minor) =13.63 min].¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 9.2 Hz, 2H), 7.41 – 7.28 (m, 10H), 6.63 – 6.56 (m, 3H), 6.37 (dd, *J* = 15.9, 6.1 Hz, 1H), 5.20 (d, *J* = 5.9 Hz, 1H), 4.84 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.29, 140.39, 138.48, 136.12, 132.31, 129.18, 128.71, 128.18, 128.15, 127.16, 126.65, 126.26, 113.39, 112.19, 60.08. IR (neat, cm⁻¹) 3447, 3208, 2916, 1630, 1502, 1468, 1384, 1309, 1182, 1111, 965, 831, 744, 695. HRMS (ESI) calcd. for C₂₁H₁₈N₂O₂[M+Na]⁺: 353.1260, Found:353.1270.

(*R*)-4-bromo-N-(1,3-diphenylallyl)aniline (8h), yellow oil, Yield: 84%. $[\alpha]_D^{25}$ =-37.4(c = 72.5, CHCl₃), 82% *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t_R (major) = 9.52 min; t_R (minor) =11.94 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 9H), 7.25 – 7.17 (m, 4H), 6.57 (dd, *J* = 27.1, 12.3 Hz, 3H), 6.37 (dd, *J* = 15.8, 6.3 Hz, 1H), 5.03 (d, *J* = 6.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.91, 141.44, 136.51, 131.90, 131.58, 130.07, 128.95, 128.62, 127.85, 127.77, 127.23, 126.58, 115.51, 109.76, 60.87. IR (neat, cm⁻¹) 3417, 3083, 2850, 1594, 1492, 1449, 1384, 1313, 1258, 1178, 1122, 967, 812, 746, 698. HRMS (ESI) calcd. for C₂₁H₁₈BrN[M+H]⁺: 364.0695, Found: 364.0683.

(*R*)-N-(1,3-diphenylallyl)-4-ethoxyaniline (8i), yellow oil, Yield: 94%. $[\alpha]_D^{25}$ = -33.5(c = 79.7, CHCl₃), 75% *ee*[determined by HPLC analysis using a Chiralcel AD-H column; *n*-Hex / *i*-PrOH = 95:5, 1.0 mL/min, 254 nm; t_R (major) = 12.97 min; t_R (minor) =18.66 min].¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.1 Hz, 2H), 7.36–7.17 (m, 9H), 6.72 (d, J = 8.9 Hz, 2H), 6.61 (dd, J = 12.2, 3.2 Hz, 3H), 6.40 (dd, J = 15.8, 6.4 Hz, 1H), 4.99 (d, J = 6.3 Hz, 1H), 3.92 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.96, 142.00, 136.71, 131.22, 130.82, 128.79, 128.53, 128.27, 127.64, 127.53, 127.32, 126.53, 115.62, 115.50, 64.03, 62.05, 14.99. HRMS (ESI) calcd. for C₂₃H₂₃NO[M+Na]⁺: 352.1672, Found:352.1635.

References

- [1] a) Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2033; b)
- Müller, C. A.; Pfaltz, A. Angew. Chem. Int. Ed. 2008, 47, 3363; c) Jiang, Z. Y.; Zhang, C.
- H.; Gu, F. L.; Yang, K. F.; Lai, G. Q.; Xu, L. W.; Xia, C. G. Synlett 2010, 1251; d) Troshin,
 K.; Mayr, H. J. Org. Chem. 2013, 78, 2649.
- [2] Ye, F.; Zheng, Z. J.; Li, L.; Yang, K. F.; Xia, C. G.; Xu, L. W. Chem. Eur. J. 2013, 19, 15452-15457
- [3] Deng, W. H.; Ye, F.; Bai, X. F.; Zheng, Z. J.; Cui, Y. M.; Xu, L. W. ChemCatChem2015, 7, 75-79

Table S1. Effect of the solvent on the catalytic asymmetric allylic alkylation of ethyl

 2-cyanoacetate

OAc +	CN COOEt COOEt	C ₃ H ₅)CI] ₂ (2.5mol%) Phos (5.5mol%) m ascorbate (SA) (5.5mol%) Solvent (2 mL) BSA (3 equiv) r.t., 0.5h	NC * COOEt
Entry	solvent	conv.(%)	<i>Ee</i> (%)
1	THF	>99	60
2	CHCl ₃	>99	88
3	CH ₃ CN	>99	67
4	DMA	59	67
5	Toluene	>99	45
6	CH ₂ Cl ₂	>99	79
7	DME	>99	86

OAc	+ $\begin{pmatrix} CN \\ COOEt \end{pmatrix}$ + $\begin{pmatrix} Pd(\eta^3-C) \\ Fei-P \\ CH \\ Base$	₃ H ₅)Cl] ₂ (2.5mol%) hos (5.5mol%) ICl ₃ (2 mL) se (3 equiv) r.t., 0.5h	NC * COOEt
Entry	Base	conv.(%)	<i>Ee</i> (%)
1	-	66.7	63
2	SA (5.5mol%) BSA	>99	88
3	KOAc (5.5mol%) BSA	>99	76
4	LiOAc (5.5mol%) BSA	>99	86
5	TMEDA	>99	87
6	K ₃ PO ₄	>99	87
7	Cs ₂ CO ₃	>99	87
8	K_2CO_3	>99	87

Table S2. Effect of the base on the catalytic asymmetric allylic alkylation of ethyl

 2-cyanoacetate

Table S3. Effect of the dosage of catalyst on the catalytic asymmetric allylicalkylation of ethyl 2-cyanoacetate

OA	CN + COOEt	$[Pd(\eta^3-C_3H_5)Cl]_2$ Fei-Phos (y m sodium ascorba (5.5mol% CHCl_3 (2 m BSA (3 equ 0 °C, 0.5	(x mol%) ol%) te (SA)) hL) uiv) h	NC * COOEt
entry	X	У	conv.(%)	ee(%)
1	2	4.4	>99	88.1
2	2.5	5.5	>99	89
3	3	6.6	>99	88.5

Table S4. Effect of the temperature on the catalytic AAA of ethyl 2-cyanoacetate

OAc	+ CN COOEt COOEt Fei-Pho sodium as (5.5 CHO BSA tempe	s)Cl] ₂ (2.5mol%) s (5.5mol%) scorbate (SA) 5mol%) cl ₃ (2 mL) a (3 equiv) rature, 0.5h	NC * COOEt
entry	Temperature (°C)	conv.(%)	<i>Ee</i> (%)
1	r.t.	>99	88
2	10	>99	89
3	0	>99	89
4	-20	98	91
5	-30	93	87

Table S5. Optimization of reaction conditions for catalytic AAA of indole.

E a tara	[Pd]	Fei-Phos	Cabiant	K 60	T e	Total	Γ. 0/
Entry	(x mol%)	(y mol%)	Solvent	K ₂ CO ₃	Temperature	Yield %	Ee %
1	4	5	toluene	2 eg.	rt.	65	96
		-	(2.5M)				
			DCM		rt. For 12h		
2	2	2.2	(3 75 M)	2 eq.	and	70	95
			(3.7.3 10)		50 °C for 12h		
3	2	2.2	Et₂O	2 ea	rt	70	93
5	2	2.2	(3.75 M)	2 су.	11.	70	
1	2	2.2	toluene	3 60	rt	75	90
4	2	2.2	(5 M)	5 69.	11.	75	90
5	Л	6	toluene	2 60	rt	70	87
J	4	0	(5 M)	2 Eq.	11.	70	07
6	Л	5	DCM	2 60	50°C	70	88
0	4	5	(5 M)	2 69.	50 C	70	50
7	2	2.2	toluene	2 00	50°C	65	04
/	2	2.2	(5 M)	2 eq.	50 C	05	54
0	0	12	toluene	2 00	rt	65	86
0	0	12	(5 M)	2 eq.	11.	05	80
0	л	6	DCM	2.00	rt	70	07
9	4	σ	(5 M)	z eq.	11.	70	92

10	л	6	Et ₂ O	2	rt	70	83
10	4	0	(5 M)	z eq.	Π.	70	65
11	л	6	EA	2 00	~	75	02
11	4	0	(5 M)	2 eq.	Π.	75	65
12	4	л	toluene	2	r+	70	QE
12	4	4	(5 M)	2 eq.	Π.	70	65
12	Л	27	toluene	2 00	rt	70	90
15	4	5.2	(5 M)	2 eq.	11.	70	90
1.4	4	toluene	2.00	rt	70	0E	
14	4	2	(5 M)	z eq.	11.	70	65

 Table S6. Effect of the solvents on palladium-catalyzed asymmetric allylic

 amination of 1,3-diphenyl-2-propenyl acetate with aniline.

Entry	solvent	conv.(%)	<i>Ee</i> (%)
1	Toluene	>99	0
2	DCM	>99	23
3	THF	>99	68
4	DMF	>99	77
5	NMP	>99	70
6	DMSO	>99	51
7	CH ₃ CN	>99	63
8	DMA	>99	80

Unless otherwise noted, all the reactions were performed with 0.5 mmol of (E)-1,3-diphenyl-2-propenyl acetate and 0.75 mmol of aniline in 2 mL of the specified solvent for 24 h, in the presence of 0.75 mmol of the specified base, using 0.0125 mmol of [Pd] as the catalyst and 0.0125 mmol of Fei-Phos as chiral ligand. The conversion rate of product is determined by GC on an achiral stationary phase. The *ee* value (*ee* %) of product was determined by chiral HPLC with a Chiracel AD-H column.

 Table S7. Effect of the bases on palladium-catalyzed asymmetric allylic

 amination of 1,3-diphenyl-2-propenyl acetate with aniline.

OAc	NH ₂	[Pd(h ³ -C ₃ H ₅)Cl] ₂ (2.5mol ⁴ Fei-Phos (5.5 mol%)_	%) NH
		Base (1.5 eq.)	
1	7a		й 8а ў

Entry	base	conv.(%)	<i>Ee</i> (%)
1	-	84	73
2	BSA	86	57
3	DBU	trace	-
5	CsF	93	81
6	TMEDA	85	80
7	Cs_2CO_3	trace	-
8	K_2CO_3	>99	80
9	LiOAc	87	75
10	NaOAc	>99	67
11	KOAc	>99	80
12	KH ₂ PO ₄	>99	70
13	K ₂ HPO ₄	>99	40
14	t-BuOK	trace	-
15	K_3PO_4	>99	83
16 ^[a]	K ₃ PO ₄	>99	80
17 ^[b]	K ₃ PO ₄	>99	81

[a] Aniline (3 eq.), K₃PO₄ (3 eq.). [b] Aniline (1.5 eq.), K₃PO₄ (3 eq.).

 Table S8. Effect of the dosage of catalyst on palladium-catalyzed asymmetric

 allylic amination of 1,3-diphenyl-2-propenyl acetate with aniline.

//

1	OAc NH ₂ + 7a	[Pd(h ³ -C ₃ H ₅)Cl] ₂ Fei-Phos (y mo K ₃ PO ₄ (1.5 equiv RT, 12 h	(x mol%) //, DMA	NH * 8a
Entry	Х	У	conv.(%)	<i>Ee</i> (%)
1	2	4.4	>99	82
2	2.5	5.5	>99	83
3	3	6.3	>99	81

 Table S9. Effect of the temperature on palladium-catalyzed asymmetric allylic

 amination of 1,3-diphenyl-2-propenyl acetate with aniline.

Entry	T/°C	conv.(%)	<i>Ee</i> (%)
1	25	>99	83
2	-5	>99	81
3	-18	>99	82

4. NMR Spectra of products: ¹H, ¹³C, ³¹P NMR

³¹P NMR of L1a

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180
													-	a (ppm									

³¹P NMR of L1b

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 fl (ppm)

110 100 fl (ppm)

---0.00

-109.76

---0.00

S75

f1 (ppm)

5. HPLC Spectra of products: Determination of *ee* values

#	Time	Area	Height	Width	Symmetry	Area %
1	16.651	16473.9	505.1	0.5045	0.693	34.648
2	20.209	31072.4	386.4	1.2661	0.893	65.352

#	Time	Area	Height	Area %
1	18.151	81168	1448	2.02
2	22.792	3945386	42966	97.98

#	Time	Area	Height	Width	Symmetry	Area %
1	10.499	25380.1	942	0.3863	0.426	49.895
2	12.04	25486.7	807.8	0.4441	0.378	50.105

#	Time	Area	Height	Width	Symmetry	Area %
1	10.487	523.8	20.8	0.4188	0.491	6.917
2	12.005	6990.7	233	0.5	0.419	93.029

#	Time	Area	Height	Width	Symmetry	Area %
1	17.509	1671.4	47.4	0.5353	0.694	49.420
2	19.78	1710.6	42.1	0.6182	0.718	50.580

1	17.846	421.3	11.4	0.5688	0.725	4.215
2	20.007	9573.3	232.2	0.629	0.613	95.785

DAD1 B, Sig=	DAD1 B, Sig=254,4 Ret=380,100 (D/EXAMPLESVJX/BXF 2015/07-23 21-17-38/VJX-15/718-2.0)								
NC + CC 10 10 10 10 10 10 10 10 10 10									
0 0	20 40	60	80	100 120	140	160 min			
#	Time	Area	Height	Width	Symmetry	Area %			
1	30.287	2418.4	31.8	1.2681	1.03	53.814			
2	35.122	2075.6	14.9	2.329	0.878	46.186			

#	Time	Area	Height	Width	Symmetry	Area %
1	29.928	1010.6	12.2	1.2664	0.922	5.140
2	34.362	18650	134.8	2.1739	0.856	94.860

#	Time	Area	Height	Width	Symmetry	Area %
1	10.664	8330.3	255.8	0.4799	0.531	45.162
2	11.896	10115.2	266.1	0.6335	0.57	54.838

2	12.868	2829.2	89.3	0.4575	0.453	49.764
---	--------	--------	------	--------	-------	--------

#	Time	Area	Height	Width	Symmetry	Area %
1	28.527	882.5	21.1	0.6477	0.647	11.818
2	30.082	924.5	20.3	0.6954	0.623	12.380
3	40.183	2803.2	26.9	1.6245	0.825	37.538
4	46.066	2857.4	20.2	2.0445	0.819	38.264

	DAD1 B, SIg=254,4 Ret=360,100 (DxEXAMPLESVUXBXF 2015-07-23 21-17-38VUX-15-717-1.D)										
mAU 40			40.402				0				
35						NC	*				
30						$\langle \rangle$					
25	26-										
20-						3	e				
10											
5		0541									
0	\	/		·							
j (J	20 40	80	80	100 120	140	160 min				
#	ŧ	Time	Area	Height	Width	Symmetry	Area %				
1		40.541	285.3	2.7	1.2941	0.937	4.551				
2		46.562	5983.6	42.6	2.1459	0.856	95.449				

2	52.117	9072.2	108.5	1.2512	0.577	30.758
3	56.935	7449.9	89.8	1.2596	1.139	25.258
4	82.336	5958.2	50.8	1.8368	0.906	20.200

1	51.298	32740.8	483.5	1.0541	0.668	51.467
2	54.49	1620.6	19.9	1.2445	0.858	2.547
3	59.285	1138.8	15.4	1.2315	1.012	1.790
4	85.694	28115.3	251.4	1.8639	0.529	44.196

0	10 20	30	40 50	60 70	80	90 min
#	Time	Area	Height	Width	Symmetry	Area %
1	50.846	5046	76.3	1.1019	0.775	27.490
2	54.331	5026.3	75.8	1.1048	0.862	27.382
3	65.507	4211.1	54.7	1.2027	0.883	22.941
4	85.875	4072.6	40.1	1.5839	0.832	22.187

DAD1 B, Sign2 mAU 100 80 60 40 20 0	29.4 Ret 900.100 (C) EXAMPLE NC++O+ race-3h	SVJINBXF 2015-07-22 21-57-491	xJX.16.718.6.D)		50	6 C C C C C C C C C C C C C C C C C C C
#	Time	Area	Height	Width	Symmetry	Area %
1	34.236	5759.9	114.8	0.7771	0.738	26.920
2	36.762	5825.5	117	0.773	0.856	27.227
3	43.702	4920	87.5	0.8802	0.887	22.995
4	53.373	4890.9	69.6	1.0835	0.718	22.858
MAU 350-	•254,4 Ret=360,100 (D:\EXAMPL	ESVJX\BXF 2015-07-22 21-57-46	30xJX-15-717-5.D)	0000		

						1
#	Time	Area	Height	Width	Symmetry	Area %
1	39.998	562.6	10.6	0.8221	0.877	1.509
2	36.3	19594.5	373.2	0.8205	0.758	52.563
3	43.351	479.4	8.1	0.9251	0.894	1.286
4	52.625	16641.4	220.4	1.161	0.55	44.641

#	Time	Area	Height	Width	Symmetry	Area %
1	69.598	4431.4	52.6	1.4045	0.822	28.203
2	84.818	4416.8	41.7	1.6389	0.772	28.110
3	99.428	3577.3	31	1.7643	0.885	22.768
4	111.421	3286.9	25.8	1.9693	0.773	20.919

#	Time	Area	Height	Width	Symmetry	Area %
1	72.327	1630	16.5	1.6492	0.795	2.816
2	87.461	30326.8	272.6	1.8538	0.65	52.383
3	103.013	1065.7	9.8	1.8215	0.765	1.841
4	113.32	24872.2	168.2	2.4648	0.503	42.961

min

#	Time	Area	Height	Width	Symmetry	Area %
1	49.069	13881.3	200.9	1.066	0.632	26.851
2	53.495	13847	200.6	1.0732	0.787	26.785
3	64.135	12049	150	1.2491	0.791	23.307
4	82.176	11920.1	110	1.6608	0.604	23.057

DAD1 B, Sig=2	DAD1 8, Sig=254,4 Ref=380,100 (0.4EXAMPLESVUXBXF 2015-07-31 10-58-08VUX-15-727-2.0)								
$\begin{array}{c} m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $									
#	Time	Area	Height	Width	Symmetry	Area %			
1	47.99	319.3	4.9	1.0188	0.84	1.550			
2	51.765	10728.2	158.5	1.0535	0.789	52.069			
3	62.21	263.8	3.4	1.1171	0.938	1.280			
4	79.369	9292.7	85	1.6917	0.661	45.101			

#	Time	Area	Height	Width	Symmetry	Area %
1	7.543	2493.5	116	0.3227	1.395	49.567
2	8.616	2537.1	110	0.3432	1.151	50.433

#	Time	Area	Height	Width	Symmetry	Area %
1	7.528	55.3	2.9	0.2751	1.433	2.040
2	8.518	2657.1	124.2	0.3196	1.175	97.960

#	Time	Area	Height	Width	Symmetry	Area %
1	20.653	6050.1	45.4	2.219	0.698	50.969
2	25.944	5820.1	19.9	4.8682	0.704	49.031

1	20.485	3752	28.1	2.2246	0	99.290
2	26.933	26.8	3.7E-1	1.2048	6.02E-2	0.710

#	Time	Area	Height	Width	Symmetry	Area %
1	10.663	3921.2	107.7	0.5667	1.671	51.046
2	11.578	3760.5	107.6	0.5359	1.392	48.954

#	Time	Area	Height	Width	Symmetry	Area %
1	11.745	807.5	29.6	0.3999	1.546	3.728
2	12.771	20849.8	568.8	0.5377	0.765	96.272

#	Time	Area	Height	Width	Symmetry	Area %
1	8.999	2686.3	121.3	0.3244	0.945	49.899
2	10.281	2697.2	108.3	0.3686	0.842	50.101

#	Time	Area	Height	Width	Symmetry	Area %
1	10.248	344.2	14.7	0.359	0.76	1.644
2	11.891	20595.3	767.6	0.409	0.623	98.356

1	3.791	2228.8	71.5	0.5193	0.831	51.102
2	9.101	2132.6	86.7	0.3769	0.806	48.898

#	Time	Area	Height	Width	Symmetry	Area %
1	3.738	108.2	3.9	0.4009	0.465	2.636
2	9.159	3998.9	150.5	0.406	0.808	97.364

14.3

0.5096

0.939

50.676

2

11.215

508.9

#	Time	Area	Height	Width	Symmetry	Area %
1	10.068	601.4	20.8	0.434	1.594	3.932
2	10.985	14693.7	411.6	0.5185	0.845	96.068

#	Time	Area	Height	Width	Symmetry	Area %
1	6.436	25382	1558.6	0.25	0.828	49.285
2	7.121	26118.9	1508.7	0.258	0.719	50.715

1	6.218	708.8	43.5	0.2481	1.242	4.376
2	6.733	15490.6	937.1	0.2469	0.807	95.624

(R, E)-N-(1,3-diphenylallyl)aniline (8a)

#	Time	Area	Height	Width	Symmetry	Area %
1	9.518	2598.1	126.5	0.2957	0.465	49.946
2	12.008	2603.7	104.7	0.3582	0.466	50.054

#	Time	Area	Height	Width	Symmetry	Area %
1	10.005	7796.2	359.9	0.3127	0.444	91.602
2	12.23	714.8	20.7	0.5753	0.357	8.398

#	Time	Area	Height	Width	Symmetry	Area %
1	7.964	435.7	25.5	0.2494	0.537	11.153
2	9.116	3471	169.1	0.2975	0.526	88.847

8b:

#	Time	Area	Height	Width	Symmetry	Area %
1	13.199	3327.7	117	0.414	0.515	49.813
2	18.795	3352.6	86.2	0.5619	0.529	50.187

#	Time	Area	Height	Width	Symmetry	Area %
1	12.982	73170.4	2322.5	0.5251	0.45	90.565
2	18.455	7623.2	214	0.5936	0.6	9.435

#	Time	Area	Height	Width	Symmetry	Area %
1	20.441	56.9	0.95	1.0009	0.68	50.250
2	23.177	56.3	0.79	1.1862	0.668	49.750

#	Time	Area	Height	Width	Symmetry	Area %
1	20.259	520.5	7.6	1.0133	0.794	7.529
2	22.88	6393	86.4	1.1245	0.636	92.471

8e:

#	Time	Area	Height	Width	Symmetry	Area %
1	13.05	4573.8	186.5	0.4088	0.803	50.310
2	21.377	4517.4	117.4	0.6414	0.912	49.690

#	Time	Area	Height	Width	Symmetry	Area %
1	12.516	2261.3	72.9	0.4819	0.86	8.326
2	20.999	24896.3	662.1	0.5867	0.841	91.674

#	Time	Area	Height	Width	Symmetry	Area %
1	15.753	2490.1	75.3	0.4878	0.607	49.819
2	21.344	2508.3	58.7	0.6204	0.633	50.181

#	Time	Area	Height	Width	Symmetry	Area %
1	15.191	4309.7	101.9	0.705	0.461	90.454
2	20.845	454.8	9.5	0.7961	0.596	9.546

8f:

$(R,E)\text{-}N\text{-}(1,3\text{-}Diphenyallyl)\text{-}4\text{-}nitroaniline}\ (\textbf{8g})$

#	Time	Area	Height	Width	Symmetry	Area %
1	12.405	2245.6	71.1	0.5264	0	46.868
2	13.877	2545.8	73	0.581	0.528	53.132

#	Time	Area	Height	Width	Symmetry	Area %
1	11.939	1113.5	37.9	0.4348	0.473	92.991
2	13.629	83.9	2.8	0.5085	0.524	7.009

#	Time	Area	Height	Width	Symmetry	Area %
1	9.633	1573.6	71.9	0.3152	0.484	49.877
2	12.213	1581.4	58.6	0.3888	0.507	50.123

#	Time	Area	Height	Width	Symmetry	Area %
1	9.523	10522.8	480.1	0.3157	0.435	91.376
2	11.941	993.1	36.7	0.3919	0.465	8.624

#	Time	Area	Height	Width	Symmetry	Area %
1	12.969	29500.1	743.8	0.661	0.392	87.525
2	18.657	4204.5	82.3	0.851	0.456	12.475

8i: