One-Step Synthesis of Silver Metallosurfactant as Efficient Antibacterial and Anticancer Material

Gurpreet Kaur^{a*}, Sandeep Kumar^b, Ravi Kant^b, Gaurav Bhanjana^b, Neeraj Dilbaghi^b, Santosh Kumar Guru^c, Shashi Bhushan^c, Sundeep Jaglan^d

^aDepartment of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University,

Chandigarh 160 014, India.

^bDepartment of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125 001, Haryana, India.

^cDivision of Cancer Pharmocolgy, Indian Institute of Integrative Medicine, Jammu, India

^dQuality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine,

Canal Road, Jammu 180001, India

Supplement Material

Functional group	pure CTAB (cm ⁻¹)	Ag-CTAB (cm ⁻¹)	Br-Ag
-CH ₂ - sym stretching	2915.46, 2848.12	2848.12, 2914.14	
-Asymmetric and symmetric CH scissoring vibrations of CH ₃ -N ⁺	1484, 1472.75	1484.18, 1463.9	
N-C sym stretching of N- (CH ₃) ₃ - moiety	1407.35, 1382.35, 1258.12	1332.69	
Rocking mode of methylene chain	729.9, 718.5	718.7	
Br-Ag			215, 170, 49
N-Br-Ag		231, 112	

Table S1: Vibrational bands for CTAB and CTA-AgB

Table S2: Chemical shifts of CTAB and CTA-AgB

group	δ_{CTAB}	$\delta_{\text{CTAB-Ag}}$	Δδ
α-CH ₃	3.082	3.002	0.080
α'-CH ₂	3.338	3.205	0.133
β'-CH ₂	1.671	1.635	0.036
β-CH ₂	1.270	1.232	0.038
γ'- CH ₂	1.188	1.172	0.016
γ-CH ₃	0.765	0.754	0.011

Figure S1: ¹HNMR of (a) CTAB (b) CTA-AgB

Figure S2: Linearisation curves obtained by (a) Coats–Redfern (CR), (b) Madhusudanan-Krishnan–Ninan (MKN), (c) Wanjun–Yuwen–Hen–Cunxin (WYHC), (d) van Krevelen (vK) methods and (e) Horowitz–Metzger (HM) methods for CTAB

Figure S3: Linearisation curves obtained by (a) Coats–Redfern (CR), (b) Madhusudanan-Krishnan–Ninan (MKN), (c) Wanjun–Yuwen–Hen–Cunxin (WYHC), (d) van Krevelen (vK) methods and (e) Horowitz–Metzger (HM) methods for CTA-AgB

Thermodynamics of micellization

Thermodynamic parameters such as ΔG_m° (Gibbs free energy), ΔH_m° (enthalpy) and ΔS_m° (entropy) of micelle formation have been estimated using following equations

$$\Delta G_{\rm m}^{\rm o} = (2 - \beta) RT \ln X_{\rm cmc} \tag{S1}$$

$$\Delta H_{m}^{o} = -RT^{2}(2-\beta)d\ln X_{cmc} / dt$$
(S2)

$$\Delta S_{m}^{o} = (\Delta H_{m}^{o} - \Delta G_{m}^{o})/T$$
(S3)

where, R, T, β and X_{cmc} represents gas constant, absolute temperature, degree of ionization and cmc in terms of mole fraction, respectively.

Table S3: cmc, surfactant ionization parameter (β) and thermodynamic parameters of micellization of CTA-AgB

Temp	СТАВ	CTA-AgB	β	ln X	ΔG_m^0	ΔH_m^0	ΔS_m^o
(K)	cmc	cmc		enie	-1	-1	-1
	(mM)	(mM)			(kJ mol)	(kJ mol)	$(kJ mol K^{-1})$
298.15	0.84-0.97 ^{39,40}	1.02	0.35	-10.90	-44.42	-18.56	0.087
303.15	1.10	1.08	0.40	-10.85	-43.73	-18.66	0.083
308.15	1.21	1.17	0.41	-10.77	-43.65	-19.07	0.079
313.15	1.35	1.27	0.43	-10.68	-43.59	-19.50	0.076

where, $\ln X_{cmc}$ is cmc in terms of mole fraction

Figure S4: Variation of (a) ΔG_{m}^{o} (b) ΔH_{m}^{o} (c) ln X_{cmc} (d) β of CTA-AgB with temperature.

Figure S5: Enthalpic and entropic contributions to ΔG_m° for CTA-AgB surfactant.

Figure S6: UV-visible spectra of DNA alone with increasing

	Average zone of	Colony formation at various dilutions of 0.5 mg/mL				
Microbes	inhibition (in	0.5X10 ⁻¹	0.5X10 ⁻²	0.5X10 ⁻³	0.5X10 ⁻⁴	0.5X10 ⁻⁵
	mm) at dose of					
	0.5mg/mL					
E. coli	11	0	60	С	C	C
S. aureus	11	36	76	288	C	C
A. niger	11	19	21	21	39	45
A. fumigatus	11	4	6	6	8	10
C. herbarium	11	5	6	14	168	C
C. lunata	12	96	232	302	504	C
H. oryzae	10	30	72	100	116	C

Table S4: Average zone of inhibition against different microbes