Electronic Supporting Information

A novel 2-(2'-aminophenyl)benzothiazole derivative displays ESIPT and permits selective detection of Zn²⁺ ions: Experimental and theoretical studies

Subramaniyan Janakipriya,^a Selvaraj Tamilmani,^b Sathiah Thennarasu^{*a}

^aOrganic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India

^bSchool of Chemistry, Bharathidasan University, Tiruchirappalli-24, India

Corresponding author Tel.: +91 44 24913289; Fax: +91 44 24911589 E-Mail: thennarasu@gmail.com

Table of contents

Page

Fig. S1& S2 ¹ H NMR and ¹³ C NMR spectra of 1	S2
Fig. S3 HMBC spectrum of 1	S3
Fig. S4 ESI-MS spectrum of 1	S3
Table S1 Calculated photophysical parameters of 1 in different solvents	S4
Fig. S5 FT-IR spectra of 1 and 1- Zn ²⁺ complex	S5
Fig. S6 [Zn ²⁺]–Induced changes in the ¹ H NMR spectrum of 1	S5
Table S2 Calculated photophysical parameters of 1- Zn ²⁺ in different solvents	S6
Fig. S7 Frontier molecular orbitals of 1 and 1- Zn^{2+} complex	S7
Table S3 Calculated energy values of molecular orbitals of 1 and 1- Zn ²⁺ complex	S 8
Fig. S8 Metal ion competition experiments	S8
Fig. S9 Linear response curve of 1 towards Zn ²⁺ ions	S9
Fig. S10 Benesi–Hildebrand plot derived from the formation of 1- Zn ²⁺ complex	S9
Fig. S11 Job plot analysis of 1- Zn ²⁺ complex	S10
Fig. S12 ESI-MS spectrum of 1- Zn ²⁺ complex	S10
Fig. S13 TGA curve of 1 and 1- Zn^{2+} complex	S11

Fig. S2 ¹³C NMR spectrum of 1 in CDCl₃

Fig. S3 HMBC spectrum of 1 in CDCl₃

Fig. S4 ESI-MS spectrum of 1

Solvent	Excitation energy (eV)	Nature of S1 transition	Wavelength (nm)	Oscillator strength
Acetonitrile	3.9653	HOMO→LUMO (91%)	312.66	0.6549
Chloroform	3.9381	HOMO→LUMO (87%)	314.82	0.6655
Dimethyl sulfoxide	3.9567	HOMO→LUMO (91%)	313.34	0.6724
Methanol	3.9671	HOMO→LUMO (91%)	312.52	0.6509
Tetrahydrofuran	3.9485	HOMO→LUMO (91%)	313.99	0.6615
Toluene	3.9197	H-1→LUMO (91%)	316.30	0.6645

(b)

Solvent	Excitation energy	Nature of S1 transition	Wavelength (nm)	Oscillator strength
	(eV)			
Acetonitrile	4.0074	HOMO→LUMO (92%)	309.37	0.6477
Chloroform	3.9830	H-1→LUMO (92%)	311.27	0.6616
Dimethyl sulfoxide	3.9990	HOMO→LUMO (92%)	310.02	0.6638
Methanol	4.0092	HOMO→LUMO (92%)	309.23	0.6441
Tetrahydrofuran		H-1→LUMO (79%),	310.54	0.6563
	3.9924	HOMO→LUMO (13%)		
Toluene	3.9672	H-1→LUMO (93%)	312.51	0.6640

Table S1. Photophysical parameters of **1** in different solvents calculated using Gaussian 09 at B3LYP/6-31++ G level (**a**) and B3LYP/6-31G** level (**b**)

Fig. S5 FT-IR spectra of 1 (green line) and $1-Zn^{2+}$ complex (block line). Inset: Expanted spectra

Fig. S6 Change in the ¹H-NMR spectra of 1 (a) in the presence of Zn^{2+} ions (b) in CDCl₃

Solvent	Excitation energy (eV)	Nature of S1 transition	Wavelength (nm)	Oscillator strength
Acetonitrile	3.867727	HOMO→L+1 (78%)	320.55	0.2862
	3.595932	H-1→LUMO (60%), HOMO→LUMO (28%)	344.78	0.2650
Chloroform	3.821928	HOMO→L+1 (77%)	324.39	0.2935
	3.553133	H-1→LUMO (57%), HOMO→LUMO (32%)	348.93	0.2720
Dimethyl sulfoxide	3.861627	HOMO→L+1 (79%)	321.05	0.2954
	3.591232	H-1→LUMO (60%), HOMO→LUMO (28%)	345.23	0.2783
Methanol	3.868827	HOMO→L+1 (78%)	320.46	0.2841
	3.596732	H-1→LUMO (60%), HOMO→LUMO (28%)	344.70	0.2620
Tetrahydrofuran	3.839328	HOMO→L+1 (77%)	322.92	0.2910
	3.570133	H-1→LUMO (58%), HOMO→LUMO (30%)	347.27	0.2690
Toluene	3.788929	HOMO→L+1 (75%)	327.21	0.2927
	3.516834	H-1→LUMO (53%), HOMO→LUMO (35%)	352.53	0.2727

(b)

Solvent	Excitation	Nature of S1 transition	Wavelength	Oscillator
	energy		(nm)	strength
	(ev)	-		
Acetonitrile	3.8423	HOMO→L+1 (76%),	322.67	0.2688
		H-1→LUMO (62%),	343.46	0.2503
	3.6097	HOMO→LUMO (24%)		
Chloroform	3.8040	HOMO→L+1 (76%)	325.92	0.2749
		H-1→LUMO (61%),	347.25	0.2591
	3.5703	HOMO→LUMO (26%)		
Dimethyl sulfoxide	3.8364	HOMO→L+1 (77%),	323.16	0.2771
		H-1→LUMO (62%),	343.89	0.2616
	3.6052	HOMO→LUMO (24%)		
Methanol	3.8434	HOMO→L+1 (76%)	322.57	0.2669
		H-1→LUMO (62%),	343.39	0.2477
	3.6104	HOMO→LUMO (24%)		
Tetrahydrofuran	3.8186	HOMO→L+1 (76%)	324.67	0.2728
		H-1→LUMO (61%),	345.75	0.2555
	3.5858	HOMO→LUMO (25%)		
Toluene	3.7763	HOMO→L+1 (76%),	328.31	0.2740
	3.5373	H-1→LUMO (60%),	350.49	0.2617
		HOMO→LUMO (27%)		

Table S2. Photophysical parameters of $1-Zn^{2+}$ complex in different solvents calculated using Gaussian 09 at B3LYP/6-31++ G level (a) and B3LYP/6-31G** level (b)

Fig. S7 Frontier molecular orbitals involved in the excitation of **1** (Left Panel) and $1-Zn^{2+}$ complex (Right Panel). The calculations were based on the energetically optimized structures using Gaussian 09 at B3LYP/6-31++ G level (a) and B3LYP/6-31G** level (b)

(a)

Orbitals	Probe 1	1-Zn ²⁺ Complex
LUMO +1	-1.42	-1.62
LUMO	-2.09	-2.12
НОМО	-5.82	-5.54
HOMO -1	-6.18	-5.80

(b)

Orbitals	Probe 1	1-Zn ²⁺ Complex
LUMO +1	-1.26	-1.5
LUMO	-1.95	-2.02
НОМО	-5.74	-5.44
HOMO -1	-6.08	-5.73

Table S3. Calculated energy values of molecular orbitals of **1** and **1-Zn**²⁺ complex using Gaussian 09 at B3LYP/6-31++ G level (**a**) and B3LYP/6-31G** level (**b**)

Fig. S8 Change in fluorescence intensity of **1** (10 μ M) in H₂O:CH₃CN (3:7, v/v) medium upon addition of 3 equiv. of Zn²⁺ ions along with 5 equiv. of other metal ions

Fig. S9 Linear response of **1** (10 μ M) in the presence of Zn²⁺ ions (0–20 μ M) in H₂O:CH₃CN (3:7, v/v) medium. The detection limits was calculated using the equation, DL = 3σ /slope.

Fig. S10 Benesi–Hildebrand plot obtained from the titration of 1 with Zn^{2+} ions in H₂O:CH₃CN (3:7, v/v) medium

Fig. S11 Job plot showing 1:1 stoichiometry for 1-Zn²⁺ complex in H₂O:CH₃CN (3:7, v/v) medium

Fig. S12 ESI-MS spectrum of 1-Zn²⁺ complex

Fig. S13 TGA curve of 1 (a) and 1-Zn²⁺ complex (b)