# **Supporting Information**

# Curing of Degraded MAPbI<sub>3</sub> Perovskite Films

Xin Guo,<sup>a,b</sup> Christopher McCleese,<sup>a</sup> Wei-Chun Lin,<sup>a,c</sup> and Clemens Burda\*,<sup>a,b,c</sup>

<sup>a</sup> Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

<sup>b</sup>Department of Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

<sup>c</sup>Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

# **Experimental Detail**

#### Materials

Methylammoninum iodide (MAI) powders were synthesized by reacting an aqueous solution of hydroiodic acid (57 wt%, Aldrich) with methylamine (33 wt % in methanol) stirring in an ice bath for 2 h. The mixture was dried at 65 °C using a rotary evaporator. The obtained precipitant was washed three times with diethyl ether and dried at 60 °C for 24 h. Commercial powder of PbI<sub>2</sub> and DMF solvent were used as received from Sigma-Aldrich.

#### Preparation of MAPbI<sub>3</sub> film

MAPbI<sub>3</sub> (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>) perovskite film samples were prepared via the drop casting method. The mixture of PbI<sub>2</sub> and MAI with a molar ratio of 1:1 was first dissolved in N, N-Dimethylformamide (DMF) to form a 25 wt % solution. MAPbI3 perovskite films on the glass substrate were prepared by evaporating the DMF solution at 70°C under reduced pressure (12.7 torr) on time scales of 45 min and 90 min. The spin coated sample was prepared via spin-coating the 1M solution of PbI<sub>2</sub> in DMF at 7000 rpm for 30s. After drying, it was immersed into the 1M MAI in isopropanol (IPA) solution for 5 min. The film was then thermally annealed at 100°C for 15min.

#### **Recovery of degraded MAPbI<sub>3</sub> film**

The recovery experiment of the degraded perovskite thin film coated on the glass substrate was performed to demonstrate the reversibility of the phase degradation process. In a glove box with the humidity controller, the relative humidity level was maintained at  $60 \pm 5\%$ . The samples were exposed to this atmosphere in the container for 14 days. And then the degraded samples were recovered by irradiation using X-ray (I= 6000 W/cm<sup>2</sup>), UV light ( $\lambda$ =390 nm, I  $\approx$  7.56 mW/cm<sup>2</sup>) and electron beam exposure (15keV). The recovered samples were placed in a sealed container with a humidity of 25  $\pm$  5% for further recovery of the perovskite phase.

#### **Materials Characterization**

X-ray diffraction (XRD) patterns were obtained on a Rigaku MiniFlex instrument using the Cu  $K_{\alpha}$  beam ( $\lambda$ = 1.54 Å), with a fast rate of 4.5min/scan (scan step: 0.1°, duration time: 0.5s) for X-ray recovery and regular speed at 25 min/scan (scan step: 0.1°, duration time: 3s) for the XRD measurement of recovered films by other techniques. SEM images and EDX spectra were acquired on a Phenom ProX.

#### 1. Calculated XRD data

The XRD data for MAPbI<sub>3</sub> were calculated using MDI Jade 6.5 software. The parameters used for the calculation of the XRD data of the cubic phase of MAPbI<sub>3</sub> are  $\rho$ =4.1643g/cm<sup>3</sup>, V=247.2Å<sup>3</sup>, Pm<sup>3</sup>m, Z = 1, cell constant: a=6.276 Å and  $\alpha$ =90°.

| d (Å)  | ( h k l )     | 2-Theta | р  |
|--------|---------------|---------|----|
| 6.276  | $(1 \ 0 \ 0)$ | 14.1    | 6  |
| 4.4378 | (1 1 0)       | 19.991  | 12 |
| 3.6235 | (1 1 1)       | 24.547  | 8  |
| 3.138  | $(2 \ 0 \ 0)$ | 28.419  | 6  |
| 2.8067 | (2 1 0)       | 31.858  | 24 |
| 2.5622 | (2 1 1)       | 34.992  | 24 |
| 2.2189 | $(2\ 2\ 0)$   | 40.626  | 12 |
| 2.092  | $(2\ 2\ 1)$   | 43.21   | 30 |
| 1.9846 | (3 1 0)       | 45.675  | 24 |
| 1.8923 | (3 1 1)       | 48.041  | 24 |
| 1.8117 | (2 2 2)       | 50.322  | 8  |
| 1.7406 | (320)         | 52.53   | 24 |
| 1.6773 | (321)         | 54.675  | 48 |
| 1.569  | (4 0 0)       | 58.804  | 6  |

Table S1. Calculated XRD data of cubic phase of MAPbI<sub>3</sub>

The parameters used for the tetragonal phase of MAPbI<sub>3</sub> are  $\rho$ =4.1264g/cm<sup>3</sup>, V=997.9Å<sup>3</sup>, I4/mcm, Z=4, cell constant: a=8.8743Å, b=8.8743Å, c=12.6708, and  $\alpha$ = $\beta$ = $\gamma$ =90°:

Table S2. Calculated XRD data of tetragonal phase of MAPbI<sub>3</sub>

| d (Å)  | (h k l ) | 2-Theta | р  | 2.0939 | (402)       | 43.168 | 8  |
|--------|----------|---------|----|--------|-------------|--------|----|
| 6.3354 | (002)    | 13.967  | 2  | 2.0917 | (330)       | 43.216 | 4  |
| 6.2751 | (1 1 0)  | 14.102  | 4  | 2.0015 | (1 1 6)     | 45.269 | 8  |
| 4.4583 | (1 1 2)  | 19.898  | 8  | 1.9862 | (332)       | 45.636 | 8  |
| 4.4372 | (200)    | 19.994  | 4  | 1.9844 | (420)       | 45.682 | 8  |
| 3.7873 | (211)    | 23.47   | 16 | 1.9177 | (413)       | 47.365 | 16 |
| 3.6344 | (202)    | 24.472  | 8  | 1.9068 | (206)       | 47.651 | 8  |
| 3.1677 | (0 0 4)  | 28.147  | 2  | 1.8936 | (422)       | 48.004 | 16 |
| 3.1375 | (220)    | 28.423  | 4  | 1.8172 | (404)       | 50.16  | 8  |
| 2.8922 | (213)    | 30.892  | 16 | 1.7656 | (325)       | 51.733 | 16 |
| 2.8278 | (1 1 4)  | 31.613  | 8  | 1.7577 | (431)       | 51.982 | 16 |
| 2.8116 | (222)    | 31.8    | 8  | 1.7519 | (226)       | 52.166 | 8  |
| 2.8063 | (310)    | 31.862  | 8  | 1.7455 | (334)       | 52.373 | 8  |
| 2.5781 | (204)    | 34.768  | 8  | 1.7404 | (510)       | 52.538 | 8  |
| 2.5658 | (312)    | 34.94   | 16 | 1.6874 | (316)       | 54.322 | 16 |
| 2.4161 | (321)    | 37.182  | 16 | 1.6816 | (424)       | 54.523 | 16 |
| 2.2292 | (224)    | 40.43   | 8  | 1.6782 | (512)       | 54.643 | 16 |
| 2.2186 | (400)    | 40.632  | 4  | 1.6469 | (217)       | 55.772 | 16 |
| 2.1359 | (215)    | 42.279  | 16 | 1.6405 | (415)       | 56.009 | 16 |
| 2.1266 | (323)    | 42.473  | 16 | 1.6363 | (433)       | 56.167 | 16 |
| 2.1219 | (411)    | 42.57   | 16 | 1.6342 | (521)       | 56.246 | 16 |
| 2.1118 | ( 0 0 6) | 42.784  | 2  | 1.5839 | (008)       | 58.2   | 2  |
| 2.1006 | (314)    | 43.025  | 16 | 1.5688 | $(4\ 4\ 0)$ | 58.814 | 4  |

Crystal structure parameters used for  $(CH_3NH_3)_4PbI_6 \cdot 2H_2O$  [1] are  $\rho=3.035g/cm^3$ ,  $V=1239.59Å^3$ , monoclinic  $P2_1/n$ , Z = 2, cell constant: a=10.3937 Å, b=11.3055Å, c=10.5519 Å and  $\beta=91.298^\circ$ :

| d(Å)   | (hkl)    | 2-Theta | р | 2.9533 | (320)    | 30.237 | 4 |
|--------|----------|---------|---|--------|----------|--------|---|
| 7.7129 | (011)    | 11.463  | 4 | 2.9515 | (-1 3 2) | 30.256 | 4 |
| 7.6505 | (110)    | 11.557  | 4 | 2.9409 | (-231)   | 30.368 | 4 |
| 7.4881 | (-101)   | 11.809  | 2 | 2.9305 | (132)    | 30.479 | 4 |
| 7.3204 | (101)    | 12.08   | 2 | 2.9201 | (231)    | 30.589 | 4 |
| 6.2429 | (-111)   | 14.175  | 4 | 2.8845 | (-1 2 3) | 30.977 | 4 |
| 6.1447 | (111)    | 14.403  | 4 | 2.8584 | (-3 2 1) | 31.267 | 4 |
| 5.6528 | (020)    | 15.664  | 2 | 2.8552 | (123)    | 31.303 | 4 |
| 5.2746 | (002)    | 16.795  | 2 | 2.8483 | (-213)   | 31.38  | 4 |
| 5.1955 | (200)    | 17.052  | 2 | 2.8325 | (-3 1 2) | 31.56  | 4 |
| 4.9825 | (021)    | 17.787  | 4 | 2.8298 | (321)    | 31.59  | 4 |
| 4.9656 | (120)    | 17.848  | 4 | 2.8264 | (040)    | 31.63  | 2 |
| 4.78   | (012)    | 18.547  | 4 | 2.7927 | (213)    | 32.022 | 4 |
| 4.7209 | (210)    | 18.781  | 4 | 2.7778 | (312)    | 32.198 | 4 |
| 4.5116 | (-1 2 1) | 19.661  | 4 | 2.7301 | (041)    | 32.777 | 4 |
| 4.4741 | (121)    | 19.827  | 4 | 2.7273 | (140)    | 32.811 | 4 |
| 4.3768 | (-1 1 2) | 20.273  | 4 | 2.6561 | (-232)   | 33.717 | 4 |
| 4.3425 | (-211)   | 20.434  | 4 | 2.6443 | (-1 4 1) | 33.872 | 4 |
| 4.3091 | (112)    | 20.595  | 4 | 2.6373 | (004)    | 33.964 | 2 |
| 4.2764 | (211)    | 20.754  | 4 | 2.6367 | (141)    | 33.972 | 4 |
| 3.8565 | (022)    | 23.043  | 4 | 2.6256 | (232)    | 34.12  | 4 |
| 3.8252 | (220)    | 23.234  | 4 | 2.6106 | (-2 2 3) | 34.323 | 4 |
| 3.7441 | (-2 0 2) | 23.745  | 2 | 2.5984 | (-3 2 2) | 34.488 | 4 |
| 3.6602 | (202)    | 24.297  | 2 | 2.5978 | (400)    | 34.497 | 2 |
| 3.6352 | (-1 2 2) | 24.467  | 4 | 2.571  | (033)    | 34.868 | 4 |
| 3.6155 | (-2 2 1) | 24.602  | 4 | 2.5683 | (014)    | 34.905 | 4 |
| 3.5961 | (122)    | 24.737  | 4 | 2.5675 | (223)    | 34.916 | 4 |
| 3.577  | (221)    | 24.871  | 4 | 2.5559 | (322)    | 35.08  | 4 |
| 3.5542 | (-212)   | 25.033  | 4 | 2.5502 | (330)    | 35.162 | 4 |
| 3.5489 | (031)    | 25.072  | 4 | 2.5318 | (410)    | 35.425 | 4 |
| 3.5427 | (130)    | 25.116  | 4 | 2.5062 | (-114)   | 35.799 | 4 |
| 3.4823 | (212)    | 25.559  | 4 | 2.5054 | (-1 3 3) | 35.811 | 4 |
| 3.3662 | (-1 3 1) | 26.456  | 4 | 2.496  | (-3 0 3) | 35.95  | 2 |
| 3.3577 | (013)    | 26.524  | 4 | 2.4913 | (042)    | 36.021 | 4 |
| 3.354  | (-1 0 3) | 26.554  | 2 | 2.4883 | (-3 3 1) | 36.066 | 4 |
| 3.3506 | (131)    | 26.582  | 4 | 2.4861 | (133)    | 36.098 | 4 |
| 3.3132 | (-3 0 1) | 26.888  | 2 | 2.4828 | (240)    | 36.149 | 4 |
| 3.3117 | (310)    | 26.899  | 4 | 2.4806 | (114)    | 36.181 | 4 |
| 3.3082 | (103)    | 26.929  | 2 | 2.4743 | (-411)   | 36.277 | 4 |
| 3.269  | (301)    | 27.258  | 2 | 2.4694 | (331)    | 36.352 | 4 |
| 3.2155 | (-1 1 3) | 27.72   | 4 | 2.4496 | (411)    | 36.655 | 4 |
| 3.1794 | (-3 1 1) | 28.041  | 4 | 2.4401 | (303)    | 36.803 | 2 |
| 3.175  | (113)    | 28.081  | 4 | 2.4374 | (-3 1 3) | 36.846 | 4 |
| 3.1403 | (311)    | 28.398  | 4 | 2.4285 | (-1 4 2) | 36.985 | 4 |
| 3.1215 | (-2 2 2) | 28.573  | 4 | 2.4226 | (-2 4 1) | 37.079 | 4 |
| 3.0724 | (222)    | 29.039  | 4 | 2.4167 | (142)    | 37.172 | 4 |
| 3.0663 | (032)    | 29.098  | 4 | 2.4109 | (241)    | 37.265 | 4 |
| 3.0505 | (230)    | 29.252  | 4 | 2.39   | (024)    | 37.604 | 4 |
| 2.9858 | (023)    | 29.9    | 4 | 2.3852 | (313)    | 37.682 | 4 |

Table S3. Calculated XRD data of (CH<sub>3</sub>NH<sub>3</sub>)<sub>4</sub>PbI<sub>6</sub>·2H<sub>2</sub>O

Crystal structure parameters used for  $CH_3NH_3PbI_3 \cdot H_2O$  [2] are  $\rho = 4.0258$  g/cm<sup>3</sup>, V = 526.3Å<sup>3</sup>, monoclinic P2<sub>1</sub>/m, Z = 2, cell constant: a= 10.3939Å, b= 4.6419Å, c= 11.1181Å and  $\beta$ = 101.161°:

| d(nm)   | ( h k l ) | 2-Theta | р | 0.23823 | (401)    | 37.729 | 2 |
|---------|-----------|---------|---|---------|----------|--------|---|
| 0.82928 | (-101)    | 10.659  | 2 | 0.23797 | (-114)   | 37.772 | 4 |
| 0.68196 | (101)     | 12.971  | 2 | 0.2375  | (-313)   | 37.849 | 4 |
| 0.54539 | (002)     | 16.239  | 2 | 0.23619 | (-304)   | 38.068 | 2 |
| 0.52505 | (-102)    | 16.872  | 2 | 0.23512 | (014)    | 38.247 | 4 |
| 0.50987 | (200)     | 17.378  | 2 | 0.23479 | (213)    | 38.304 | 4 |
| 0.50056 | (-201)    | 17.704  | 2 | 0.2321  | (020)    | 38.766 | 2 |
| 0.44634 | (102)     | 19.875  | 2 | 0.23096 | (312)    | 38.964 | 4 |
| 0.431   | (201)     | 20.59   | 2 | 0.23079 | (-403)   | 38.994 | 2 |
| 0.42712 | (011)     | 20.779  | 4 | 0.22851 | (-214)   | 39.399 | 4 |
| 0.42248 | (110)     | 21.01   | 4 | 0.22732 | (303)    | 39.614 | 2 |
| 0.41464 | (-202)    | 21.412  | 2 | 0.22701 | (021)    | 39.67  | 4 |
| 0.40505 | (-111)    | 21.925  | 4 | 0.22659 | (-411)   | 39.746 | 4 |
| 0.38373 | (111)     | 23.16   | 4 | 0.22631 | (120)    | 39.799 | 4 |
| 0.36559 | (-103)    | 24.326  | 2 | 0.22351 | (-121)   | 40.319 | 4 |
| 0.36359 | (003)     | 24.462  | 2 | 0.22345 | (410)    | 40.329 | 4 |
| 0.35349 | (012)     | 25.172  | 4 | 0.22317 | (204)    | 40.383 | 2 |
| 0.34777 | (-112)    | 25.593  | 4 | 0.22231 | (-105)   | 40.545 | 2 |
| 0.34398 | (-301)    | 25.88   | 2 | 0.22117 | (114)    | 40.763 | 4 |
| 0.34325 | (210)     | 25.936  | 4 | 0.2203  | (-4 1 2) | 40.932 | 4 |
| 0.34098 | (202)     | 26.112  | 2 | 0.21972 | (121)    | 41.045 | 4 |
| 0.34036 | (-211)    | 26.16   | 4 | 0.21816 | (005)    | 41.352 | 2 |
| 0.33991 | (300)     | 26.195  | 2 | 0.21628 | (-205)   | 41.728 | 2 |
| 0.32751 | (-203)    | 27.206  | 2 | 0.2155  | (402)    | 41.886 | 2 |
| 0.32325 | (103)     | 27.571  | 2 | 0.21356 | (022)    | 42.284 | 4 |
| 0.32173 | (112)     | 27.704  | 4 | 0.21228 | (-1 2 2) | 42.552 | 4 |
| 0.31736 | (-302)    | 28.094  | 2 | 0.21195 | (411)    | 42.621 | 4 |
| 0.31585 | (211)     | 28.231  | 4 | 0.21124 | (220)    | 42.772 | 4 |
| 0.30923 | (-212)    | 28.848  | 4 | 0.21056 | (-2 2 1) | 42.916 | 4 |
| 0.30803 | (301)     | 28.963  | 2 | 0.21051 | (-314)   | 42.928 | 4 |
| 0.28721 | (-113)    | 31.114  | 4 | 0.20787 | (-501)   | 43.499 | 2 |
| 0.28624 | (013)     | 31.222  | 4 | 0.20732 | (-404)   | 43.621 | 2 |
| 0.27717 | (-104)    | 32.271  | 2 | 0.20666 | (-413)   | 43.769 | 4 |
| 0.27643 | (-303)    | 32.36   | 2 | 0.20592 | (122)    | 43.934 | 4 |
| 0.27637 | (-311)    | 32.367  | 4 | 0.20535 | (105)    | 44.061 | 2 |
| 0.27481 | (212)     | 32.556  | 4 | 0.20445 | (-5 0 2) | 44.266 | 2 |
| 0.27425 | (310)     | 32.625  | 4 | 0.20435 | (221)    | 44.289 | 4 |
| 0.2727  | (004)     | 32.815  | 2 | 0.20416 | (313)    | 44.333 | 4 |
| 0.27217 | (203)     | 32.88   | 2 | 0.20395 | (500)    | 44.381 | 2 |
| 0.26761 | (-213)    | 33.457  | 4 | 0.20253 | (-2 2 2) | 44.709 | 4 |
| 0.26626 | (302)     | 33.631  | 2 | 0.20225 | (-305)   | 44.773 | 2 |
| 0.26527 | (113)     | 33.761  | 4 | 0.20113 | (214)    | 45.036 | 4 |
| 0.26252 | (-204)    | 34.125  | 2 | 0.20051 | (-115)   | 45.184 | 4 |
| 0.26198 | (-312)    | 34.197  | 4 | 0.19744 | (015)    | 45.926 | 4 |
| 0.25963 | (-401)    | 34.517  | 2 | 0.19604 | (-215)   | 46.271 | 4 |
| 0.25666 | (311)     | 34.929  | 4 | 0.19594 | (-123)   | 46.297 | 4 |
| 0.25493 | (400)     | 35.174  | 2 | 0.19563 | (023)    | 46.374 | 4 |
| 0.25157 | (104)     | 35.66   | 2 | 0.19546 | (412)    | 46.417 | 4 |
| 0.25028 | (-402)    | 35.85   | 2 | 0.19507 | (304)    | 46.516 | 2 |

Table S4. Calculated XRD data of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>·H<sub>2</sub>O



2. XRD pattern of fresh, degraded and recovered perovskite MAPbI<sub>3</sub>.

**Figure S1.** The XRD patterns of (A) fresh perovskite film, (B) degraded under humidity of  $60\% \pm 5\%$  for 14 days, (C) the film recovered from degraded phases. The intensity in all patterns is normalized for comparison.



#### 3. Recovery of spin-coated samples

**Figure S2.** The XRD patterns of spin-coated perovskite films degraded under humidity of 60% for 3 days, after 4 scans of X-ray irradiation (50min, 12.5min/scan), no obvious recovery was observed through X-ray treatment. Labeled peaks in the sample belonging to the tetragonal perovskite.



**Figure S3.** The XRD patterns of spin-coated perovskite films degraded under controlled humidity of 60% for 3 hrs. Major recovery occurred during the first scan of 5 min X-ray exposure. However, the observed recovery should be mainly due to the low humidity level 25% during XRD measurement. After 10 consecutive X-ray irradiation scans (4.5min/scan), no further recovery was observed. The labeled peaks belong to the tetragonal perovskite phase.



**Figure S4.** The SEM images of (A) fresh spin-coated perovskite film and (B) film recovered for 3 days from degradation (humidity of 60% for 3 hrs). (C) The XRD patterns of fresh spin-coated perovskite film, the degraded film (3 hrs under R.H. 60%) after 16 scans of X-ray irradiation (72min, 4.5min/scan), and film recovered 3 days under R.H. of 25%. Labeled peaks in the sample belong to the tetragonal perovskite phase. (D) Photographs of perovskite films from fresh to recovered stage.



**Figure S5.** Williamson-Hall plots of the size and strain of (A) fresh spin-coated perovskite film and (B) film recovered 3 days after degradation (60% humidity for 3 hrs). According to the equation  $\beta_{hkl} \cos \theta = \frac{K\lambda}{D} + 4\varepsilon \sin \theta$ , where  $\beta_{hkl}$  is the specimen broadening,  $\theta$  is the peak position, K is the shape factor of the average crystallite,  $\lambda$  is wavelength of Cu k $\alpha$  radiation, D is crystalline size and  $\varepsilon$  is the microstrain.



## 4. Recovery by UV-irradiation

Figure S6. XRD patterns of a fresh perovskite film prepared at 70°C for 90 min and recovered after 15 minutes UV irradiation and low humidity exposure. The inset shows photographs of

perovskite film sintered at 70°C for 90 min, degraded under  $60 \pm 5\%$  humidity for 14 days, after 15 minutes UV irradiation and then stored 1 day at 25 ±5% humidity.

### 5. SEM images and EDX spectrum

The SEM images and EDX spectrum of the fresh sample are shown in Fig. S7:



**Figure S7.** The SEM images and EDX spectrum of the fresh sample prepared at 70°C for 45min under vacuum, A) at 8300x magnification, acquired from the center part; B) at 12500x magnification, acquired from the edge part; C) EDX spectrum acquired by overview scanning of the region in image C with a scale bar 200 $\mu$ m. The fan-shaped morphology formed in the drop-casted sample prepared under vacuum.

В Atomic percentage Certainty Point 1 С 0.99 1 18.9% 0.95 N Pb 18.5 % 0.98 с 7.8 % 0.96 +' +' Point 2 Atomic percentage Certainty 54.9% 0.99 25.9% 0.99 Pb Ν 13.6 % 0.92 с 5.7% 0.94

The SEM images and EDX spectrum of the X-ray recovered sample are shown in Fig.S8:

**Figure S8.** The SEM images and EDX spectrum of the X-ray recovered sample, A) at 8200x magnification, acquired from the center part; B) at 7500x magnification, acquired from the edge part; C) EDX spectrum acquired at point 1 and point 2 in image C with a scale bar  $10\mu m$ , indicating the formation of stoichiometric perovskite grains nucleated from the PbI<sub>2</sub> rich bulk body.



The SEM images and EDX spectrum of the E-beam recovered sample are shown in Fig.S9:

**Figure S9.** The SEM images and EDX spectrum of the E-beam recovered sample, A) at 6100x magnification, acquired from the center part; B) at 6100x magnification, acquired from the edge part; C) EDX spectrum acquired at point 1 and point 2 in image C with a scale bar  $10\mu m$ , indicating the formation of stoichiometric perovskite grains nucleated from the MAI rich bulk body.



The SEM images and EDX spectrum of the low moisture recovered sample are shown in Fig.S10:

**Figure S10.** The SEM images and EDX spectrum of the low moisture recovered sample, A) at 7400x magnification, acquired from the center part; B) at 8300x magnification, acquired from the edge part; C) EDX spectrum acquired at point 1 and point 2 in image C with a scale bar  $10\mu m$ , indicating the formation of MAI rich perovskite grains nucleated from the PbI<sub>2</sub> rich bulk body.



The SEM images and EDX spectrum of the heat recovered sample are shown in Fig.S11:

**Figure S11.** The SEM images and EDX spectrum of the heat recovered sample, A) at 8300x magnification, acquired from the center part; B) at 7800x magnification, acquired from the edge part; C) EDX spectrum acquired at point 1 and point 2 in image C with a scale bar  $10\mu m$ , indicating the formation of MAI rich perovskite grains nucleated from the PbI<sub>2</sub> rich bulk body.