Title:

Ultrathin Annealing-Free Polymer Layers: New Opportunity to Enhance Mobility and Stability of Low-Voltage Thin-Film Organic Transistors †

Authors:

Deyang Ji^a, Chengliang Wang, ^b Wenping Hu^{*c}, Harald Fuchs ^{*a}

Affiliations:

^a Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany,
Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße
10, 48149 Münster, Germany.

^b Institute of Physics & IMN MacroNano®, Technical University of Ilmenau, Germany

^c Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

† Electronic supplementary information (ESI) available.

Correspondence and requests for materials should be addressed to H. F. (fuchsh@unimuenster.de) and W. H. (huwp@iccas.ac.cn).

Fig. S1 Frequency dependence of the specific capacitance (black line: PPDO/SiO₂; red line: SiO₂).

Fig. S2 Thickness of the PPDO used in this work.

Fig. S3 a) Roughness of the PPDO/ SiO₂ surface, b) The roughness of the SiO₂ surface.

Fig. S4 Contact angle of water on the surface of a) SiO_2 , and b) PPDO/ SiO_2 . The contact angle of ethylene glycol on the surface of c) SiO_2 and d) PPDO/ SiO_2 .

Fig. S5 Thickness of the pentacene used in this work.

Fig. S6 XRD patterns of pentacene film grown on PPDO/SiO₂ (black line) and SiO₂ surface (red line)

Supporting-7

Fig. S7 a) Switching cycles of drain current as a function of cycling time based on SiO_2 insulator after 100 days, b) Switching cycles of drain current as a function of cycling time based on PPDO/SiO₂ insulator after 100 days.