Supplementary Information

Effect of doped indium into Bi_2Te_3 matrix on the microstructure and thermoelectric transport properties

Xin Guo,*a Jieming Qin, a Xiaoling Lv, a Le Deng, a Xiaopeng Jia, b Hongan Ma b and Hongsheng Jia c

^a Institute of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China. E-mail: guoyml@126.com (Xin Guo)

^b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

^C Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China.

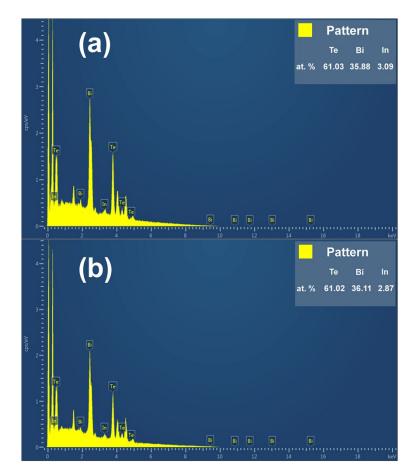


Fig. S1. EDS patterns and atomic ratios of A (a) and B (b) regions in Fig.2(c) of the article.

Table S1. The atomic ratios analysis of as-prepared samples via EDS measurement.

Nominal	Elemental composition		
composition	In (at. %)	Bi (at. %)	Te (at. %)
Bi _{1.95} In _{0.05} Te ₃	1.02	40.21	58.77
Bi _{1.93} In _{0.07} Te ₃	1.45	39.48	59.07
Bi _{1.9} In _{0.1} Te ₃	2.15	36.51	61.34
Bi _{1.8} In _{0.2} Te ₃	3.98	36.92	59.10