## SUPPPORTING INFORMATION

## 3D bicontinuous SnO<sub>2</sub>/TiO<sub>2</sub> core/shell structures for highly efficient organic dye-sensitized solar cell electrodes

Chang-Yeol Cho, Sujin Baek, Kiwon Kim and Jun Hyuk Moon\*,

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea,

Corresponding author, E-mail: junhyuk@sogang.ac.kr



Figure S1. Surface SEM image of 3D connected  $\text{TiO}_2/\text{TiO}_2$  structure. We deposited the  $\text{TiO}_2$  shell on the  $\text{TiO}_2$  core under the same precursor bath conditions but controlled the deposition time to obtain a similar adsorption density of the sensitizing dyes.

| Electrodes                                                                                                                         | Efficiency | Reference                                 |
|------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|
| 3D Bicontinuous SnO <sub>2</sub> /TiO <sub>2</sub>                                                                                 | 8.21%      | Our result                                |
| TiO <sub>2</sub> -coated mesoporous SnO <sub>2</sub>                                                                               | 3.8 %      | J. Phys. Chem. C 2010, 114, 22032         |
| TiO <sub>2</sub> -coated SnO <sub>2</sub> nanotubes                                                                                | 11%        | ACS Nano, 2011, 23, 2302                  |
| TiO <sub>2</sub> -coated Zn-doped SnO <sub>2</sub><br>nanoflowers                                                                  | 6.78 %     | Chem. Mater. 2011, 23, 3938               |
| TiO <sub>2</sub> -coated Ultrathin SnO <sub>2</sub><br>Nanosheets                                                                  | 2.82 %     | Ind. Eng. Chem. Res. 2012, 51, 4247       |
| TiO <sub>2</sub> -coated Mg-doped SnO <sub>2</sub>                                                                                 | 4.15 %     | ACS Appl. Mater. Interfaces 2012, 4, 6261 |
| TiO <sub>2</sub> -coated SnO <sub>2</sub> nanotubes                                                                                | 3.53 %     | J. Phys. Chem. C 2013, 117, 3232          |
| $TiO_2$ nanosheets on<br>SnO <sub>2</sub> nanotubes dispersed in<br>an organized mesoporous<br>$TiO_2$ film                        | 7.7 %      | Adv. Mater. 2013, 25, 4893                |
| TiO <sub>2</sub> nanosheets on<br>SnO <sub>2</sub> hollow spheres<br>dispersed in an organized<br>mesoporous TiO <sub>2</sub> film | 8.2 %      | Adv. Funct. Mater. 2014, 24, 5037         |

Table S1. Comparative list of conversion efficiencies of the  $SnO_2/TiO_2$  DSSCs.



Figure S2. (a) Diffuse Reflectance spectra and (b) photocurrent density–voltage characteristics of SnO<sub>2</sub>/TiO<sub>2</sub> and commercial electrodes. A commercial nanocrystalline TiO<sub>2</sub> electrode (Dyesol Inc.) with a scattering layer (JGC C&C Inc.) on top was prepared. The nanocrystalline electrode and scattering layer were each 5  $\mu$ m in thickness. The average diffuse reflectance of SnO<sub>2</sub>/TiO<sub>2</sub> electrode is comparable to that of the commercial electrodes. The amounts of dye adsorbed on the commercial and SnO<sub>2</sub>/TiO<sub>2</sub> electrodes are approximately 0.08 and 0.11  $\mu$ mol cm<sup>-2</sup>. The *Jsc* of SnO<sub>2</sub>/TiO<sub>2</sub> and commercial electrodes is 19.06 mA/cm<sup>2</sup> and 15.07 mA/cm<sup>2</sup>, respectively. The  $\eta$  of SnO<sub>2</sub>/TiO<sub>2</sub> and commercial electrodes is 8.21% and 7.63%, respectively. Considering the lower scattering property of and the lower dye adsorption density on the SnO<sub>2</sub>/TiO<sub>2</sub> electrode as compared with those of the commercial electrode, we attribute the higher *Jsc* and efficiency of the former electrode to its enhanced charge-transport properties.