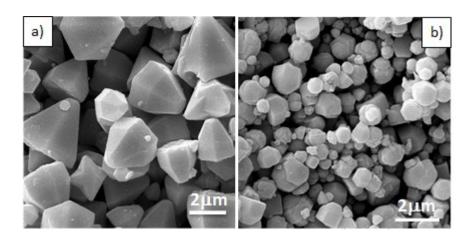
Supporting informations:

New Insights into the Sensing Mechanism of Shape Controlled ZnO Particles.

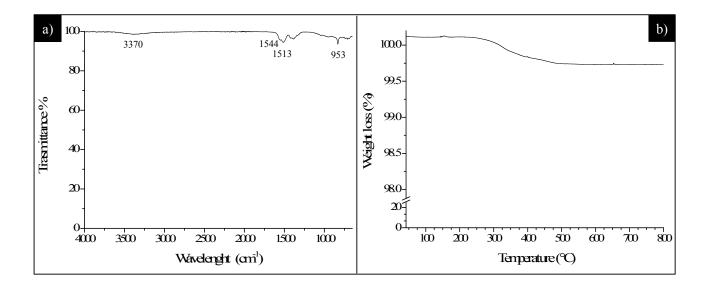
Massimiliano D'Arienzo^{a*}, Matteo Redaelli^a, Barbara Di Credico^a, Stefano Polizzi^b, Roberto Scotti^a
and Franca Morazzoni^a

^a INSTM, Department of Materials Science, University of Milano-Bicocca,

Via R. Cozzi 53, I-20125 Milano, Italy


^b Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venezia,

Via Torino 155/b, I-30172 Venezia, Italy


RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

*e-mail: massimiliano.darienzo1@unimib.it

Structural, morphological and spectroscopic characterization

Figure S1. SEM images of ZnO microcrystals obtained at 200° C for a) Zn/OA/OM = 1:2:8 and b) Zn/OA/OM = 1:8:2

Figure S2. a) ATR-FTIR spectrum and b) TGA curve of *EP* microcrystals after the washing treatment with EtOH, in order to purify the products from the surfactants residuals.

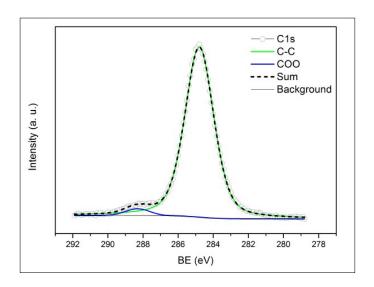
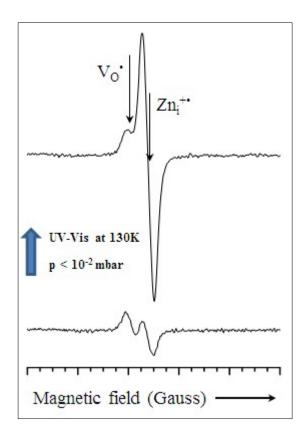



Figure S3. XPS spectrum in the C1s region for EP ZnO microcrystals

ESR investigation

Figure S4. Experimental ESR spectra of ZnO® microcrystals at 130K before (bottom) and after (top) UV-Vis irradiation at $p < 10^{-2}$ mbar.