Selective Chromo Soumen et al.

Supporting Information

Selective Chromo-fluorogenic molecular sensor for dual channel

recognition of Cu²⁺ and F⁻: Effect of functional group on selectivity

Soumen Ghosh^a, Aniruddha Ganguly^a, Arghadeep Bhattacharyya^a, Md. Akhtarul Alam^{b*}, and Nikhil Guchhait^{a*}

^aDepartment of Chemistry

University of Calcutta

92, A.P.C. Road, Kolkata 700 009, India

Telephone 91-33-23508386

Fax: 91-33-23519755

^bDepartment of Chemistry

Aliah University

IIA/27, New Town, Kolkata-700 156, West Bengal, India

*Corresponding author, E-mail: alam_iitg@yahoo.com (M. A. A.)

and

nguchhait@yahoo.com (N.G.)

Table of Contents

1.	Syntheses and characterization	S3
2.	Naked-eye color change	.S12
3.	UV–vis Spectra	.S13
4.	Fluorescence Spectra	S19
5.	Optimized structure	S22
6.	Interference of ions	S23
7.	Toothpaste test	S28
8.	Mechanism	

1. Synthesis

1.1. Syntheses and characterization

Scheme S1. Syntheses of Compounds 1 (HNHCB), 2 (NHCB), and 3(HNHB)

1.2. Compound 2. Sythesis of *naphthalene-2-carboxylic acid (4-cyano-benzylidene)hydrazide (NHCB):*

Compound **2** has been prepared according to the similar procedure as compound **1** by the reaction between naphthalene-2-carboxylic acid hydrazide (1.3 mmol, 0.250 g) and 4-formyl benzonitrile (1.4 mmol, 0.180 g) in methanol. The colourless solid thus obtained was filtered and then dried under vacuum (yield: 0.32 g, 80%). ¹H NMR in d_6 -DMSO, 300MHz, δ (ppm): 12.32 (s, 1H, –CONH–), 8.70 (s, 2H, –CH=N– and naph), 8.10-7.96 (m, 8H), 7.68-7.66 (m, 2H), ¹³C NMR (75.5 MHz, d_6 -DMSO, 20 °C) δ (ppm): 111.00, 120.74, 124.22, 126.26, 127.21, 128.74, 129.08, 129.29, 130.07, 134.58, 136.27, 148.95, 154.51, 164.23, 176. IR (KBr): 3390, 3203, 3055, 2860, 2227, 1655, 1637, 1623, 1571, 1503, 1370, 1300, 1238, 1203, 1071 cm⁻¹.

1.3. Compound **3**. Sythesis of *benzylidene 3-hydroxy-naphthalene-2carbohydrazide*(HNHCB):

Compound **3** has been also prepared according to the similar procedure as compound **1** by the condensation between 3-hydroxy-naphthalene-2-carboxylic acid hydrazide and benzaldehyde (yield: 72%). ¹H NMR in d_6 -DMSO, 300MHz, δ (ppm): 12.02 (s, 1H, – CONH–), ~11.5 (broad, 1H, –OH), 8.48 (s, 2H, –CH=N– and naph), 7.94 (d, J=7.8Hz, 1H), 7.80-7.35 (m, 9H). ¹³C NMR (75.5 MHz, d_6 -DMSO, 20 °C) δ (ppm): 111.04, 116.88, 117.63, 119.06, 119.90, 126.28, 129.08, 129.79, 129.91, 130.74, 132.03, 136.81, 154.50, 157.95, 164.20. IR (KBr): 3242, 3023, 2894, 1659, 1622, 1537, 1487, 1397, 1228, 1213, 1075, 1102, 1070 cm⁻¹.

2. Characterization

Figure S1. ¹H NMR (300 MHz) spectrum of HNHCB in d_6 -DMSO at 20 °C

Figure S2. ¹³C NMR (300 MHz) spectrum of HNHCB in *d*₆-DMSO at 20 °C

Fig. S3. Mass spectra (TOF-MS ES+) of HNHCB

Figure S4. ¹H NMR (300 MHz) spectrum of NHCB in *d*₆-DMSO at 20 °C

Figure S5. ¹³C NMR (300 MHz) spectrum of NHCB in d_6 -DMSO at 20 °C

Figure S6. ¹H NMR (300 MHz) spectrum of HNHB in d₆-DMSO at 20 °C

Figure S7. ¹³C NMR (300 MHz) spectrum of HNHB in d_6 -DMSO at 20 °C

3. Naked-eye color change

Figure S8. Naked-eye color changes of compound **2** (NHCB) $(1.0 \times 10^{-5} \text{ M})$ after addition of 2 equivalent of F⁻ and OAc⁻ in acetonitrile water mixture (7:3, v/v).

4. UV–Vis Spectra

Figure S9. UV–vis spectral changes of **HNHCB** (1.0×10^{-6} M) upon addition of OAc– ion (0–5 equiv.) in acetonitrile water mixture (7:3, v/v).

Figure S10. UV–vis spectral changes of **NHCB** (0.5 μ M) in presence of F⁻ ion (0-2.5eqv.) in aqueous acetonitrile solvent (7:3, v/v).

Figure S11. UV–vis spectral changes of **NHCB** (0.5 μ M) in presence of AcO⁻ ion (0-2.5eqv.) in acetonitrile water mixture (7:3, v/v).

Figure S12. UV–vis spectral changes of **HNHB** (0.5 μ M) in presence of F⁻ ion (0-2.5eqv.) in acetonitrile water mixture (7:3, v/v).

Figure S13. UV–vis spectral changes of **HNHCB** (0.5 μ M) in presence of F⁻, AcO⁻, H₂PO₄⁻, Cl⁻, Br⁻, HSO₃⁻, NO₃⁻ and CN⁻ ion (0-2.5eqv.) in acetonitrile water mixture (7:3, v/v).

Figure S14. UV–vis spectral changes of **HNHCB** (0.5 μ M) in presence of other cations (Cu²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cr³⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ca²⁺, Mg²⁺, Pb²⁺ion (0-2.5eqv.).) in acetonitrile water mixture (7:3, v/v).

Figure S15. Emission intensity of **HNHCB** (0.5 μ M) (a) in presence of Cu²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺ and Hg²⁺ ion (b) in presence of Pb²⁺, Ca²⁺, Mg²⁺, Cr³⁺ (0-2.5eqv.) in acetonitrile water mixture (7:3, v/v).

Figure S16. Benesi–Hildebrand plot for 1:1 complexation of HNHCB -Cu²⁺ complex

Figure S17. The fluorescence intensities of **HNHCB** and **HNHCB**– Cu^{2+} at various pH values at room temperature in acetonitrile water mixture (Tris-HCl buffer, pH = 7.2, CH₃CN–H₂O = 7 : 3, v/v)

Figure S18. Emission intensity of HNHB (0.5 μ M) in presence of Cu²⁺ (0-5eqv.) in acetonitrile water mixture (7:3, v/v).

HNHCB +Cu²⁺

Figure S19. B3LYP optimized structure of **HNHCB** (top) and **HNHCB** –Cu²⁺ complex (bottom)

Figure S20. The selectivity of **HNHCB** for Cu^{2+} in the presence of other metal ions in acetonitrile water mixture (CH₃CN-H₂O = 7 : 3, v/v), λ em = 440 nm

Figure S21. Fluorescence spectra of **HNHCB** (1×10^{-7} M), **HNHCB** with copper ion and **HNHCB** with mixture of ions (Cu²⁺, Ni²⁺, Co²⁺, Mn²⁺, Fe²⁺, Cd²⁺, Hg²⁺, Ca²⁺, Mg²⁺, Pb²⁺, Fe³⁺, Cr³⁺, F⁻, OAc⁻, H₂PO₄⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, CN⁻, HSO₃⁻ and HSO₄⁻) in acetonitrile water mixture (7:3, v/v)

Figure S22. The selectivity of **HNHCB** for F⁻ in the presence of other anions in acetonitrile water mixture (CH₃CN-H₂O = 7 : 3, v/v)

Figure S23. UV–vis spectral changes of **1(HNHCB)** in bare F-and in presence of F- and Cu^{2+} mixture in aqueous acetonitrile (7:3, v/v).

Figure S24. UV–vis spectral changes of **1(HNHCB)** in bare OAc ⁻and in presence of OAc⁻ and Cu²⁺ mixture in aqueous acetonitrile (7:3, v/v).

Figure S25. Determination of detection limit of Cu²⁺ by **HNHCB** (1×10^{-7}) in CH₃CN-water mixture at $\lambda_{em} = 443$ nm.

Figure S26. Determination of detection limit of F⁻ by **HNHCB** (1x 10⁻⁶) in water acetonitrile mixture at λ_{abs} =390nm.

Fig. S27 Uv-vis spectra of **HNHCB** (1×10^{-5} M) and **HNHCB** in presence of toothpaste in aqueous acetonitrile solution and Naked-eye color change (inset).

Fig. S28 Color change of test paper containing **HNHCB** (10⁻⁴ M) in presence of different anions

Table S1. Some useful data calculated from fluorescence decay behavior of **HNHCB** andits complexes with Cu^{2+}

Environment	$\Gamma_1^{b}(ns)$	$\Gamma_2^{b}(ns)$	$\Gamma_3^{b}(ns)$	α_1	α ₂	α ₃	$\tau_{av}(ns)$	χ^2
CH ₃ CN-H ₂ O	0.06695	0.66899	5.44898	0.73	0.24	0.019	0.32	1.003
Cu(II)	0.124558	0.68152	4.85526	0.87	0.10	0.012	0.34	0.998

Table S2. Some useful theoretical parameters of HNHCB and after complexation with Cu^{2+}

Substrates	C14-O36	C17-N19	C17O18	C22N21	N19-N21	O36-H37	O-Cu ²⁺	N-Cu ²⁺
1	1.377	1.387	1.219	1.286	1.350	0.966	-	-
1+Cu ²⁺	1.415	1.324	1.22	1.286	1.350		1.70	1.651

Scheme S2. Plausable mechanism of color change of HNHCB in presence of F-