Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Controlled Synthesis of Mesoporous Nanostructured Anatase TiO2 on Genetically Modified Escherichia coli Surface for High Reversible Capacity and Long-life Lithium-ion Batteries

Shuang-Hong Xue, Hao Xie*, Hang Ping, Xiao-Mei Xu, Jing Li, Xiao-Yu Yang, Zheng-Yi Fu, Bao-Lian Su*

Fig. S1 Zeta potential of E. coli cells with INP or INP-SiliSila displaying on surface.

Fig. S2 The EDS spectrum shows TiO₂ deposition on bacterial surface before (Panel A) and after (Panel B) calcination.

Fig. S3 Electrochemical performance of nanostructured anatase TiO₂ electrode. (A) Charge-discharge voltage profile at various current rate. (B) Ultralong-life cycling performance at a high current rate of 2C and 1C.

Table S1:	The	relevant	discharge	capacities,	charge	capacities	and	irreversible	capacity	losses	(ICL) at
different	curre	nt rate.									

Current rate	1C	1C	1C	1C	2C	5C	10C
Cycle	1st	2nd	3rd	348 th	1st	1st	1st
Discharge capacity	317	243.8	242.4	235.9	225.2	206.1	182.7
Charge capacity	247.2	243.8	242.2	234.8	224.3	198	174.8
Irreversible capacity loss	22%	0.1%	0.08%	0.05%	0.04%	4%	4%

Table S2: A comparison of the electrochemical performance between the as-prepared mesoporous nanostructured anatase TiO_2 and reported pure nanostructured TiO_2 .

nunosti uctui cu unutuse	a la	reported pure nanostru		
Electrode Materials	Specific Capacity (mAh/g)	Discharge Rate (1C=167mAh/g)	Capacity Retention	References
Mesoporous Nanostructured Anatase TiO ₂		243 at 1C retain 97.1% (after 200 at 2C retain 89% (after 175 at 10C	r 350 cycles) 200 cycles)	This work
Mesoporous hollow TiO ₂ microspheres	347	0.5C	66.3% (after 100 cycles)	<i>J Power Sources</i> 2011, <i>196</i> , 8618.
Mesoporous TiO ₂ fiber	190	0.5C	91.6% (after 100 cycles)	<i>Electrochim Acta</i> 2015 , <i>180</i> , 658.
TiO ₂ hollow nano- Spheres	295.2	1C	71.8% (after 100 cycles)	<i>Chemical Science</i> 2016, <i>7</i> , 793.
NYTiO ₂ porous microspheres	237	1C	94.9% (after 100 cycles)	<i>Nanoscale</i> 2015, 7, 12979.
3D interconnected macroporous TiO ₂	209	1C	88.8% (after 200 cycles)	<i>Rsc Advances</i> 2016, <i>6</i> , 26856.
Nanoporous Anatase TiO ₂ Mesocrystals	204.7	1C	74.2% (after 60 cycles)	J. Am. Chem. Soc. 2011, 133, 933.
Mesoporous TiO ₂ microspheres	191	1C	84% (after 100 cycles)	<i>Nanoscale</i> 2014, 6, 14926.
Hierarchical mesoporous TiO ₂ nanowire bundles	189	1C	74.6% (after 100 cycles)	Advanced Science 2015 , 2 (7).
Submicron-sized mesoporous anatase TiO ₂ beads	172	1C	85.1% (after 200 cycles)	<i>Rsc Advances</i> 2013, 3 , 13149.
Mesoporous TiO ₂ - B/anatase microparticles	247	1C (1C=330 mAh/g)	69.2% (after 80 cycles)	Chinese Journal of Chemical Engineering 2015 , 23, 583.
Hierarchical 3D ordered macro- mesoporous TiO ₂	223	4C	83.4% (after 50 cycles)	J Mater Chem A 2014, 2, 9699.
Hierarchically porous hollow TiO ₂ microspheres	158	5C	82.9% (after 100 cycles)	Chemical Engineering Journal 2013, 228, 724.
Mesoporous single-grain layer anatase nanosheets	120	5C (1C=170 mAh/g)	60.8% (after 4000 cycles)	J Mater Chem A 2015, 3, 6455.
Mesoporous TiO ₂ -B nanowires	248	6C	79% (after 50 cycles)	<i>J Mater Sci</i> 2015, <i>50</i> , 6321.
Crystalline TiO ₂ hollow spheres	184.1	10C (1C=173 mAh/g)	69.2% (after 1000 cycles)	<i>Science advances</i> 2016 , <i>2</i> , e1501554.
Mesoporous anatase TiO ₂	126	10C	98.5% (after 1100 cycles)	J Alloy Compd 2016, 674, 174.
Mesoporous titania rods	262	0.1 A/g	81% (after 40 cycles)	<i>J Power Sources</i> 2012, <i>214</i> , 298.
Mesoporous Titania Nanotubes	~210	10 A/g	57% (after 30 cycles)	Advanced Materials 2007, 19, 3016.

Note: The discharge-charge capacities of some TiO_2 materials have reached 395.2 at 1C current rate. Most of these TiO_2 materials reach the theoretical discharge-charge capacity of 167. The as-prepared TiO_2 material in the present study exhibit a discharge-charge capacity of 243 that is higher than most reported ones. Besides, the as-prepared TiO_2 materials show higher stability. It retains 97% of the discharge-charge capacity after 350 cycles at 10C current rate.

Table S3: A	comparison	of the	electrochemical	performance	between	the	as-prepared	mesoporous
nanostructur	ed anatase TiO	D ₂ and d	loped or composi	te TiO ₂ .				

Electrode Materials	Specific Capacity (mAh/g)	Discharge Rate (1C=167mAh/g)	Capacity Retention	References
Mesoporous		243 at 1C retain 97.1% (after 350 cycles)	This work
Nanostructured Anatase		200 at 2C retain 89% (a	fter 200 cycles)	
TiO ₂		175 at 10	С	
Mesoporous MoS ₂ -TiO ₂	165	6C	75.2% (after 1000 cycles)	Chemelectrochem 2015, 2,
Nanofibers				374.
Cr ₂ O ₃ @TiO ₂ yolk/shell	~700	0.5C	72.8% (after 500 cycles)	Micropor Mesopor Mat
octahedrons				2015, <i>203</i> , 86.
C-SnO _x @TiO ₂	~480	2000 mA/g	78.5% (after 1000 cycles)	Mater Lett

				2015, 155, 142,
mesoporous TiO2/SnO2/C hollow microspheres	~390	2000 mA/g	83% (after 500 cycles)	J Power Sources 2015, 279, 528.
Ag/TiO ₂ core-shell nanocables	181	1C	88.4% (after 230 cycles)	<i>New J Chem</i> 2015, 3 9, 7889.
TiO ₂ /MWCNT composites	316	0.2C	96.9% (after 100 cycles)	Acs Applied Materials & Interfaces 2015. 7, 3676
Hierarchal mesoporous SnO ₂ @C@TiO ₂ nanochains	807	100 mA/g	45.7% (after 100 cycles)	Electrochim Acta 2015, 184–219
Submicron-sized mesoporous anatase TiQ2@SnQ2	731.5	1C	59.7% (after 850 cycles)	<i>J Alloy Compd</i> 2015, <i>639</i> , 60.
H-TiO ₂ /GC hollow spheres	~150	5C (1 A/g)	91.3% (after 1000 cycles)	J. Am. Chem. Soc. 2015, 137, 13161.
mTiO2/Graphene/ mTiO2 Sandwich-Like Nanosheets	247	0.1C (20 mA/g)	95.9% (after 100 cycles)	<i>Nano Letters</i> 2015 , <i>15</i> , 2186.
mesoporous hollow C/F/TiO ₂	252	0.5C	83.3% (after 100 cycles)	Electrochim Acta 2015, 157, 1,
mesoporous TiO2 fibers@N-doped@carbon composite	125.1	10C	85.2% (after 500 cycles)	<i>Nanoscale</i> 2015, 7, 13898.
Mesoporous TiO ₂ -Carbon	171	1C	76.6% (after 100 cycles)	J Electrochem Soc 2015, 162, D3013.
carbon coated TiO ₂ nanoparticles	~410	30 mA/g	65.9% (after 300 cycles)	J Alloy Compd 2014, 606, 61.
Carbon nanofiber- templated mesoporous TiO ₂ nanotubs	108.1	2C	100% (after 500 cycles)	<i>Rsc Advances</i> 2014, <i>4</i> , 9061.
Mesoporous 3D TiO ₂ /CNTs	79	89C (15 A/g)	90% (after 900 cycles)	J Power Sources 2014, 254, 18.
hierarchical mesoporous TiO2-C sub-microspheres	212	1C	71.2% (after 50 cycles)	<i>Rsc Advances</i> 2014, <i>4</i> , 19266.
mesoporous TiO ₂ /graphene nanocomposite	~160	5000 mA/g	88.6% (after 100 cycles)	<i>Chem. Eng. J.</i> 2014, 256, 247,
CNTs/mTiO ₂ coaxial nanocables	~190	1C	96.3% (after 70 cycles)	<i>Carbon</i> 2014, <i>75</i> , 345.
C-coated TiO ₂ mesoporous microspheres	~180	1C	87.4% (after 200 cycles)	Electrochim Acta 2014, 120, 231.
Cr, N-codoped mesoporous TiO2 microspheres	159.6	5C	99% (after 300 cycles)	J Mater Chem A 2014 , 2, 1818.
Sandwich-like m-anatase TiO ₂ Sheets/rGO	230	IC	70% (after 50 cycles)	<i>Rsc Advances</i> 2014, <i>4</i> , 43039.
Ordered mesoporous TiO ₂ -C nanocomposite	174	1C	95.4% (after 900 cycles)	J Mater Chem A 2013 , 1, 4293.
Mesoporous anatase TiO ₂ /3D GN	314	0.5C	62.7% (after 100 cycles)	J Mater Chem A 2013 , 1, 12750.
mesoporous 6% Sn-doped TiO ₂ thin film	575.7	0.5C	43.9% (after 80 cycles)	J Mater Chem A 2013 , <i>1</i> , 13222.
C&N co-doped mesoporous TiO ₂	~200	1C	80% (after 100 cycles)	<i>Rsc Advances</i> 2013 , <i>3</i> , 3836.
Mesoporous TiO ₂ /multilevel carbon networks	152.1	5C	92% (after 3000 cycles)	<i>Rsc Advances</i> 2013 , <i>3</i> , 24882.
Mesoporous TiO ₂ -Sn@C core-shell microspheres	~550	500 mA/g	37.5% (after 2000 cycles)	<i>Chem Commun</i> 2013 , 49, 2792.
3D Mesoporous, micro/nanosized TiO ₂ /C Nanocomposites	135.4	0.5 A/g	98.9% (after 100 cycles)	Acs Applied Materials & Interfaces 2012, 4, 2985,
Ordered mesoporous carbon-TiO ₂	618	0.1C	81% (after 80 cycles)	<i>Carbon</i> 2012 , <i>50</i> , 4259.
TiO ₂ @reduced graphene oxide nanocomposite	386.4	5C (1000 mA/g)	39.5% (after 100 cycles)	J Mater Chem 2012, 22, 9759.
Zn doped mesoporous TiO ₂	~160	1C	87% (after 100 cycles)	J Mater Chem 2012, 22, 17625
Sandwich-Like G-TiO ₂ Nanosheets	269	0.2C	67% (after 30 cycles)	Advanced Materials 2011, 23, 3575.

Note: Comparing with doped or composite TiO_2 , the as-prepared TiO_2 in the present study exhibited higher than average electrochemical performance.