Supplementary information

Controlling the magnetic properties of polymer-iron oxide nanoparticle composite thin films via spatial particle orientation

Jaseung Koo,*^a Hyeri Kim,^{a,b} Ki-Yeon Kim,^a Young Rae Jang,^a Jeong-Soo Lee,^a Sung Won Yoon,^c Byoung Jin Seo, ^c Taekyung Yu,^d Joona Bang,^b Kyunghwan Yoon,^e Guangcui Yuan,^f and Sushil K. Satija^f

^aDivision of Neutron Science, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Korea. E-mail: jkoo@kaeri.re.kr

^bDepartment of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Korea.

^cDepartment of Physics, Catholic University of Korea, Bucheon, 420-743, Korea.

^dDepartment of Chemical Engineering, Kyunghee University, Yongin, 446-701, Korea.

eLG Chemical, Daejeon, 305-738, Korea.

^fCenter for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 U.S.A.

Supporting information - 1

Fig. S1. TEM images of an Fe_3O_4 nanoparticle LB monolayer after compression at the surface pressure of 20 mN/m, measured at the different area.

Fig. S2: Surface pressure – area isotherm recoded for Fe_3O_4 nanoparticles at the air-water interface and pH 7.4 and 20 °C.

Supporting information - 3

Fig. S3. Magnetization versus applied magnetic field H for the Fe_3O_4 nanoparticle–PMMA multilayer at 2 and 300 K after zero field cooling (ZFC) and 2 kOe field cooling (FC).

Supporting information - 5

Fig. S4. Magnetization versus field curves at 2 K for the Fe_3O_4 nanoparticle LB monolayer films as a function of surface pressure (a) 10 mN/m, (b) 20 mN/m, and (c) 33 mN/m with the external magnetic field parallel to the film surface after zero field cooling (ZFC) and 2 kOe field cooling (FC).

Supporting information - 6