Tetraphenylethene -functionalized diketopyrrolopyrrole solid state emissive molecules: enhanced emission in the solid state and as a

fluorescent probe for cyanide detection

Lingyun Wang ^{a*}, Linhui Zhu^a, Lin Li ^{b*}, Derong Cao ^a

^a School of Chemistry and Chemical Engineering, State Key Laboratory of

Luminescent Materials and Devices, South China University of Technology,

Guangzhou, China, 510641

^b School of Food Science and Engineering, South China University of Technology,

Guangzhou, China, 510641

*Corresponding author: Tel. +86 20 87110245; fax: +86 20 87110245. E-mail: lingyun@scut.edu.cn; felinli@scut.edu.cn

Fig.S1 ¹H NMR spectrum of compound 7 in CDCl₃.

 144.53 144.55 144.	- 36.51

Fig.S2 ¹³C NMR spectrum of compound 7 in CDCl₃.

Fig.S4 ¹H NMR spectrum of **DPP1** in CDCl₃.

Fig.S5¹³C NMR spectrum of **DPP1** in CDCl₃.

Fig.S6 HRMS spectrum of DPP1.

Fig.S8 ¹³C NMR spectrum of **DPP2** in CDCl₃.

Fig.S9 HRMS spectrum of DPP2.

Fig.S10 (a) Normalized UV-vis and (b) photoluminescence (PL) spectra of DPP1 and

Fig.S11 The photoluminescence (PL) spectra of **DPP1** (10 µM) in different solvents.

Fig.S12 The photoluminescence (PL) spectra of DPP2 (10 µM) in different solvents.

Fig.S13 The UV-vis spectra of **DPP1** (10 μ M) in THF/water.

Fig. S14 (a) The photoluminescence (PL) spectra, (b) PL intensity vs f_h and (c) emission photographs of **DPP2** in CHCl₃/hexane mixtures with different f_h values.

Fig.S15 (a) The photoluminescence (PL) spectra spectra, (b) PL intensity $vs f_m$ and (c) emission photographs of **DPP2** in CHCl₃/methanol mixtures with different f_m values.

Fig.S16 (a) PL intensity $vs f_w$ and (b) emission photographs of **DPP2** in THF/water mixtures with different f_w values.

Fig. S17 The photographs of compound **4** in daylight (left) and under 365 nm excitation (right).

Fig.S18 The optimizations of the molecular geometry by theoretical calculation.

Fig. S19 UV-Vis spectral changes of **DPP1** in THF (10 μ M) with the increasing concentrations of cyanide anion.

Fig. S20 The photoluminescence (PL) spectral changes of **DPP1** (10 μ M) in THF with the increasing concentrations of CN⁻ in THF under excitation at 510 nm.

Fig.S21 The linear relation for concentration of CN^- in the range of 1–8 μ M.

Fig. S22 Selectivity of **DPP2**. The black bars represent fluorescence intensity at 631nm of **DPP2** in THF in the presence of other anions (52 equiv). The red bars represent the fluorescence intensity that occurs upon the subsequent addition of 52 equiv of CN^- to the above solution. From 1 to 10, control, F^- , CI^- , Br^- , I^- , HSO_4^- , $H_2PO_4^-$, OAc^- , NO_3^- and CIO_4^- .

Fig. S23 Time-dependent absorption intensity of probe **DPP2** (10 μ M) in THF at 525 nm in the presence of CN⁻ (24 equiv) at room temperature.