Supporting information (SI)

Thermally stable ferrocene- α -cyanostilbenes as efficient materials for second order nonlinear optical polarizability

Sugandha Dhoun, ^{\dagger} Griet Depotter,^{\ddagger} Sarbjeet Kaur, ^{\dagger} Paramjit Kaur,^{$*,\dagger$} Koen Clays^{\ddagger} and Kamaljit

Singh^{*,†},¹.

[†]Department of Chemistry, UGC-Centre of Advance Study-II, Guru Nanak Dev University,

Amritsar-143005, India.

[‡]Department of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.

* Email: kamaljit.chem@gndu.ac.in; paramjit19in@yahoo.co.in.

¹The first two authors contributed equally.

Sr. No.	Content	Page number					
1.	Figure S1: Thermogravimetric (TGA) curves of chromophores 4-8.	S5					
2.	Figure S2: UV-visible absorption spectra of chromophore 4 recorded at 1×10^{-5} M in dichloromethane and the resolved peaks after band fitting.	S6					
3.	Figure S3: UV-visible absorption spectra of chromophore 5 recorded at	S7					
	$1 \ge 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting.						
4.	Figure S4: UV-visible absorption spectra of chromophore 6 recorded at 1×10^{-5} M in dichloromethane and the resolved peaks after band fitting	S8					
5.	Figure S5: UV-visible absorption spectra of chromophore 7 recorded at 1 $\times 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting						
6.	Figure S6: UV-visible absorption spectra of chromophore 8 recorded at 1 x 10^{-5} M in dichloromethane and the resolved peaks after band fitting	S10					
7.	Figure S7: Emission spectra of 4 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 352$ nm.	S11					
8.	Figure S7a : Emission spectra of 4 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 476$ nm	S11					
9.	Figure S8: Emission spectra of 5 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 356$ nm.	S12					
10.	Figure S8a : Emission spectra of 5 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 474$ nm.	S12					
11.	Figure S9: Emission spectra of 6 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 356$ nm.	S13					
12.	Figure S9a : Emission spectra of 6 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 476$ nm.	S13					
13.	Figure S10: Emission spectra of 7 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 362$ nm.	S14					
14.	Figure S10a : Emission spectra of 7 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 466$ nm.	S14					
15.	Figure S11: Emission spectra of 8 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 364$ nm.	S15					
16.	Figure S11a : Emission spectra of 8 at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 460$ nm.	S15					
17.	Table S1: Quantum yield of the chromophores 4-8.	S16					
18.	Figure S12: Linear correlation of absorbance and concentration of chromophore 6 at 362 nm.	S16					
19.	Figure S13: Electron density maps generated from Gauss view with structural models superimposed.	S17					
20.	Figure S14 : Spectro-electrochemical curve of chromophore 4 recorded at 5×10^{-5} M in dichloromethane and the resolved peak after band fitting.	S18					

21	Figure S15 : Spectro-electrochemical curve of chromophore 5 recorded at5 $\times 10^{-5}$ M in dichloromethane and the resolved neak after hand fitting	S18
21.	Figure S16 : Spectro-electrochemical curve of chromophore 6 recorded	S10 S19
	at5 $\times 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.	517
23.	Figure S17a : Spectro-electrochemical curve of chromophore 7 recorded at5 $\times 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.	S19
24.	Figure S17b : Spectro-electrochemical curve of chromophore 8 recorded at 5×10^{-5} M in dichloromethane and the resolved peak after band fitting.	S20
25.	Table S2: Comparison of experimentally (UV) and theoretically (TD-DFT) calculated HOMO- LUMO Energy data and the transitions.	S20
26.	Table S3: UV-visible absorption data of 4-8 in various solvents.	S21
27.	Figure S18: Cyclic voltammogram of 4 (1 x 10 ⁻⁴ M in dichloromethane).	S22
28.	Figure S19: Cyclic voltammogram of 5 (1×10^{-4} M in dichloromethane).	S22
29.	Figure S20: Cyclic voltammogram of 6 (1×10^{-4} M in dichloromethane).	S23
30.	Figure S21: Cyclic voltammogram of 7 (1 x 10 ⁻⁴ M in dichloromethane).	S23
31.	Figure S22: Cyclic voltammogram of 8 (1 x 10 ⁻⁴ M in dichloromethane).	S24
32.	Table S4: Energies of the Frontier Orbitals HOMO-n to LUMO+n (n=0, 1, 2,3,4,5 & 6) obtained from TD-DFT carried out at B3LYP/6-31G level in dichloromethane as solvent medium.	S25
33.	Table S5: Energies of the Frontier Orbitals HOMO-n to LUMO+n (n=0, 1, 2,3,4,5 & 6) obtained from TD-DFT carried out at B3LYP/6-31G level in gas phase.	S26
34.	Figure S23: B3LYP/6-31G predicted energy level diagram for the chromophores 4-8 .	S27
35.	Figure S24: Contour Surfaces of frontier molecular orbitals involved in electronic transitions of the HE bands of the chromophores 4-6 , obtained from TD-DFT calculations using dichloromethane as solvent at an isosurface value of 0.02 au.	S28
36.	Figure S25: Contour Surfaces of frontier molecular orbitals involved in electronic transitions of the HE bands of the chromophores 7-8 , obtained from TD-DFT calculations using dichloromethane as solvent at an isosurface value of 0.02 au.	S28
37.	Table S6 : Cartesian coordinates from the optimized structure of 4 atB3LYP/6-31G	S29-S30
38.	Table S7: Cartesian coordinates from the optimized structure of 5 at	S31-S32

	B3LYP/6-31G	
39.	Table S8 : Cartesian coordinates from the optimized structure of 6 atB3LYP/6-31G	\$33-\$35
40.	Table S9 : Cartesian coordinates from the optimized structure of 7 atB3LYP/6-31G	\$35-\$37
41.	Table S10 : Cartesian coordinates from the optimized structure of 8 atB3LYP/6-31G	S37-S40
42.	Figure S26: ¹ H NMR (CDCl ₃) of 4.	S41
43.	Figure S27: ¹³ C NMR (CDCl ₃) of 4.	S42
44.	Figure S28: ¹ H NMR (CDCl ₃) of 5.	S43
45.	Figure S29: ¹³ C NMR (CDCl ₃) of 5 .	S44
46.	Figure S30: ¹ H NMR (CDCl ₃) of 6 .	S45
47.	Figure S31: ¹³ C NMR (CDCl ₃) of 6 .	S46
48.	Figure S32: ¹ H NMR (CDCl ₃) of 7.	S47
49.	Figure S33: ¹³ C NMR (CDCl ₃) of 7 .	S48
50.	Figure S34: ¹ H NMR (CDCl ₃) of 8.	S49
51.	Figure S35: ¹³ C NMR (CDCl ₃) of 8 .	S50
52.	Complete reference 61	S51

Thermogravimetric Curves

Figure S1: Thermogravimetric (TGA) curves of chromophores 4-8.

Figure S2: UV-Visible absorption spectra of chromophore 4 recorded at $1 \ge 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting (Black lines: experimental data, Red line: fitted by the software).

Figure S3: UV-Visible absorption spectra of chromophore 5 recorded at 1×10^{-5} M in dichloromethane and the resolved peaks after band fitting (Black lines: experimental data, Red line: fitted by the software).

Figure S4: UV-Visible absorption spectra of chromophore **6** recorded at $1 \ge 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting (Black lines: experimental data, Red line: fitted by the software).

Figure S5: UV-Visible absorption spectra of chromophore 7 recorded at $1 \ge 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting (Black lines: experimental data, Red line: fitted by the software).

Figure S6: UV- Visible absorption spectra of chromophore **8** recorded at $1 \ge 10^{-5}$ M in dichloromethane and the resolved peaks after band fitting. (Black lines: experimental data, Red line: fitted by the software).

Figure S7: Emission spectra of 4 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 352$ nm.

Figure S7a : Emission spectra of 4 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 476$ nm.

Figure S8: Emission spectra of 5 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 356$ nm.

Figure S8a : Emission spectra of 5 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 474$ nm.

Figure S9: Emission spectra of **6** at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 362$ nm.

Figure S9a : Emission spectra of 6 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 476$ nm.

Figure S10: Emission spectra of 7 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 356$ nm.

Figure S10a : Emission spectra of 7 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 466$ nm.

Figure S11: Emission spectra of 8 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 364$ nm

Figure S11a : Emission spectra of 8 at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 460$ nm

Chromophores	Quantum yield (Φ_{f})	Quantum yield (Φ_f)
	HE band	LE band
4	0.1324	0.0309
5	0.1423	0.0519
6	0.0580	0.0084
7	0.0233	0.0295
8	0.0668	0.0264

 Table S1: Quantum yield of the chromophores 4-8.

Figure S12: Linear correlation of absorbance and concentration of chromophore 6 at 362 nm.

Figure S13: Electron density maps of **4-8** generated from Gauss view 5.09, with isovalue of 0.0004 with structural models superimposed.

Figure S14: Spectro-electrochemical curve of chromophore 4 recorded at 5 x 10^{-5} M in dichloromethane and the resolved peak after band fitting.

Figure S15: Spectro-electrochemical curve of chromophore **5** recorded at $5 \ge 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.

Figure S16: Spectro-electrochemical curve of chromophore **6** recorded at $5 \ge 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.

Figure S17a: Spectro-electrochemical curve of chromophore 7 recorded at $5 \ge 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.

Figure S17b: Spectro-electrochemical curve of chromophore **8** recorded at $5 \ge 10^{-5}$ M in dichloromethane and the resolved peak after band fitting.

Table S2: Comparison of experimentally (UV-visible) and theoretically (TD-DFT) calcu	ılated
HOMO-LUMO energy data and the transitions.	

Compound	Transition	CI coefficient	E(eV)/ λ _{theor} ^b in nm	Oscillator strength	Assignment	λ _{exp} ªin nm
4	H-2→L	0.65719(86%)	3.0852/381.77	1.1149	$\pi \rightarrow \pi^{\star}$	352
	H-3→L+1	0.30288(18%)	2.4087/488.99	0.0299	MLCT	476
5	H-2→L	0.67906(92%)	2.9924/393.61	1.1710	$\pi {\rightarrow} \pi^{\star}$	356
	H→L	0.56993(65%)	2.6477/444.85	0.3743	MLCT	474
6	H-2→L	0.67004(90%)	2.9912/393.76	1.2090	$\pi \rightarrow \pi^{*}$	362
	H-4→L+2	-0.25644(13%)	2.4082/489.09	0.0451	MLCT, d→d	476
7	H-2→L	0.69144(96%)	2.9236/402.87	1.3329	$\pi \rightarrow \pi^{*}$	356
	H-1→L+5	-0.24486(12%)	2.4215/486.40	0.0547	MLCT, d→d	466
8	H→L	0.64925 (84%)	2.7485/428.53	1.0479	$\pi \rightarrow \pi^{*}$	364
	H-6→L+1	-0.24771 (13%)	2.4264/482.44	0.0147	MLCT	460
	H-6→L+7	-0.34738 (23%)	2.4264/482.44	0.0147	d→d	460

^a recorded at 1x 10⁻⁵ M in dichloromethane. ^b Calculated from TD-DFT using B3LYP/6-31G and applying correction factor of 0.95.

where, M- Metal, L- Ligand, A- Acceptor, D- Donor.

Solvent	Hexane	Toluene	Diethyl	DCM	THF	Methanol	ACN	DMF	DMSO
Compound			ether						
4	348	352 (26800)	348	352 (30300)	350 (15300)	346	346	350 (30500)	352 (34100)
	470	474 (3100)	472	476 (2700)	472 (1700)	470	470	474 (2800)	476 (3500)
5	352	356 (18400)	352	356 (12000)	354 (23300)	350	348	352 (19800)	354 (27700)
	476	474 (2600)	470	474 (1200)	472 (2800)	470	468	472 (2700)	473 (2100)
6	356	364 (33800)	358	362 (42600)	362 (24500)	-	356	362 (18600)	366 (24500)
	468	474 (3300)	470	476 (8000)	476 (2000)	_	470	476 (1600)	478 (2300)
7	346	358 (24500)	346	356 (28500)	358 (22000)	350	352	356 (26600)	344 (36000)
	457	464 (2400)	458	466 (2100)	468 (1900)	463	466	472 (2700)	462 (2400)
8	358	364 (23000)	362	364 (12800)	364 (27400)	362	358	364 (32900)	366 (27000)
	456	462 (2900)	456	460 (2400)	462 (5400)	458	452	458 (6700)	460 (0.057)

Table S3:	UV-visible	absorption	data of 4-8	in	various solvents.	

Figure S18: Cyclic voltammogram of 4 (1 x 10⁻⁴M in dichloromethane).

Figure S19: Cyclic voltammogram of 5 (1 x 10⁻⁴M in dichloromethane).

Figure S20: Cyclic voltammogram of 6 (1 x 10⁻⁴M in dichloromethane).

Figure S21: Cyclic voltammogram of 7 (1 x 10⁻⁴M in dichloromethane).

Figure S22: Cyclic voltammogram of 8 (1 x 10⁻⁴M in dichloromethane).

COMPOUND	4	5	6	7	8
HOMO-6	-7.27034	-7.33320	-7.14979	-6.99768	-6.48610
HOMO-5	-7.02434	-7.03795	-7.02353	-6.93047	-6.19875
HOMO-4	-6.64964	-6.81972	-6.53835	-6.43086	-5.78677
HOMO-3	-6.51903	-6.53862	-6.48610	-6.37399	-5.55738
HOMO-2	-5.90432	-5.97535	-5.86813	-5.75357	-5.52690
HOMO-1	-5.56609	-5.58296	-5.56473	-5.45751	-5.49398
НОМО	-5.46758	-5.49370	-5.46268	-5.35765	-5.37180
LUMO	-2.43786	-2.62100	-2.50753	-2.50181	-2.44031
LUMO+1	-0.80845	-1.30968	-2.00003	-1.23267	-1.12192
LUMO+2	-0.56354	-0.75783	-0.77280	-0.57279	-0.67783
LUMO+3	-0.39374	-0.60817	-0.48735	-0.41878	-0.34613
LUMO+4	-0.35456	-0.37932	-0.39837	-0.36408	-0.33252
LUMO+5	-0.30803	-0.37143	-0.35402	-0.28027	-0.31918
LUMO+6	-0.22503	-0.06285	-0.34313	-0.24082	-0.31728

Table S4: Energies of the Frontier Orbitals HOMO-n to LUMO+n (n=0, 1, 2,3,4,5 & 6) obtained from TD-DFT carried out at B3LYP/6-31G level in dichloromethane as solvent medium.

COMPOUND	4	5	6	7	8
HOMO-6	-7.27251	-7.41401	-7.06788	-6.97455	-6.44529
HOMO-5	-7.05999	-7.13319	-6.99142	-6.95632	-6.10678
HOMO-4	-6.62869	-6.87550	-6.57835	-6.44746	-5.71629
HOMO-3	-6.55223	-6.63631	-6.51413	-6.37127	-5.54404
HOMO-2	-5.88963	-6.03358	-5.87738	-5.72908	-5.48418
НОМО-1	-5.60119	-5.67956	-5.60881	-5.48908	-5.45860
НОМО	-5.48146	-5.57724	-5.48717	-5.37289	-5.29642
LUMO	-2.40031	-2.67324	-2.49338	-2.46399	-2.31160
LUMO+1	-0.80491	-1.31485	-1.94996	-1.21145	-1.01389
LUMO+2	-0.59239	-0.84926	-0.77987	-0.60763	-0.58722
LUMO+3	-0.38857	-0.69688	-0.57361	-0.40381	-0.33252
LUMO+4	-0.37987	-0.47701	-0.45279	-0.36653	-0.27401
LUMO+5	-0.29714	-0.46613	-0.39674	-0.43715	-0.25034
LUMO+6	-0.18775	-0.13088	-0.37334	-0.22503	-0.24245

Table S5: Energies of the Frontier Orbitals HOMO-n to LUMO+n (n=0, 1, 2,3,4,5 & 6) obtained from TD-DFT carried out at B3LYP/6-31G level in gas phase.

Figure S23: B3LYP/6-31G predicted energies of FMOS of the chromophores 4-8.

Figure S24: Contour Surfaces of frontier molecular orbitals involved in electronic transitions of HE bands of the chromophores **4-6**, obtained from TD-DFT calculations using dichloromethane as solvent at an isosurface value of 0.02 au.

Figure S25: Contour Surfaces of frontier molecular orbitals involved in electronic transitions of HE bands of the chromophores **7-8**, obtained from TD-DFT calculations using dichloromethane as solvent at an isosurface value of 0.02 au.

Center	Atomic	At	omic	Coordinate	es (Angstroms)	
Number	Numb	er	Туре	X Y	Z	
1	6	0	-7.659296	0.987207	0.209511	
2	6	0	-6.313205	1.353602	0.266204	
3	6	0	-5.290680	0.387652	0.172121	
4	6	0	-5.663942	-0.966249	0.047130	
5	6	0	-7.007316	-1.340642	-0.011420	
6	6	0	-7.991233	-0.357319	0.066051	
7	1	0	-8.436336	1.738826	0.275951	
8	1	0	-6.054883	2.400954	0.378787	
9	1	0	-4.905155	-1.740499	0.028796	
10	1	0	-7.283972	-2.384184	-0.100229	
11	35	0	-9.863045	-0.876231	-0.007679	
12	6	0	-3.858475	0.797029	0.210843	
13	6	0	-2.874215	0.054956	-0.383250	
14	6	0	-1.428471	0.224813	-0.448035	
15	6	0	-0.711823	-0.673192	-1.277702	
16	6	0	-0.681712	1.200149	0.256522	
17	6	0	0.668377	-0.604023	-1.410869	
18	1	0	-1.260347	-1.434085	-1.825847	
19	6	0	0.699901	1.271972	0.128452	
20	1	0	-1.176925	1.903742	0.911692	
21	6	0	1.407914	0.374717	-0.706905	
22	1	0	1.191430	-1.301766	-2.055195	
23	1	0	1.252727	2.025520	0.678216	
24	6	0	2.822002	0.451308	-0.825374	
25	6	0	4.036332	0.528610	-0.932098	

Table S6. Cartesian co	oordinates from t	he optimized	l structure of	4 at B3LYP/6-31G
------------------------	-------------------	--------------	----------------	-------------------------

26	26	0	6.914368 -0.258317 0.148533	
27	6	0	6.300001 -0.246136 -1.831533	
28	6	0	5.444006 0.606692 -1.030620	
29	6	0	6.288714 1.627538 -0.442224	
30	1	0	5.944132 2.426091 0.195660	
31	6	0	7.630183 1.402465 -0.880484	
32	1	0	8.489441 1.999565 -0.617814	
33	6	0	7.637313 0.249189 -1.735468	
34	1	0	8.502835 -0.169230 -2.224931	
35	6	0	6.787738 -2.214000 0.849315	
36	1	0	6.445040 -3.072264 0.293137	
37	6	0	5.971831 -1.347715 1.650807	
38	1	0	4.905003 -1.430398 1.788450	
39	6	0	6.820515 -0.344477 2.226637	
40	1	0	6.506383 0.449258 2.885970	
41	6	0	8.163020 -0.590685 1.780974	
42	1	0	9.035600 -0.015659 2.048581	
43	6	0	8.142706 -1.745967 0.929746	
44	1	0	8.997627 -2.192389 0.446531	
45	1	0	5.966105 -1.092038 -2.411448	
46	1	0	-3.225727 -0.816640 -0.929962	
47	6	0	-3.590368 2.030974 0.883336	
48	7	0	-3.422699 3.054101 1.438654	

Center	Atomic	Atomic	Coordina	tes (Anastroms)		
Number	Number	Tvpe	X Y	Z		
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_		
1	6 0	-8 623969	0 670474	0 228802		
2	6 0	-7 293561	1 076334	0.287506		
2	6 0	-6 241153	0 143572	0 174899		
4	6 0	-6 573115	-1 220274	0.030135		
5	6 0	-7 900223	-1 633869	-0 032504		
6	6 0	-8 943680	-0 691125	0.062043		
7	1 0	-9 419869	1 401967	0 309743		
8	1 0	-7.065601	2 128/00	0.416511		
0	1 0	5 700457	1 060373	0.001441		
10	1 0	-J. 1304J1	2 696309	0 139014		
10	6	· · · · · · · · · · · · · · · · · · ·	-2.000300	0.015577		
10	6	-4.023777	0.115706	0.210077		
12	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.115790	-0.379490		
13	0		0.097372	-0.448745		
14	6		-0.790927	-1.267281		
15	6 () -1.661127	1.104753	0.241303		
16	6 () -0.259904	-0.684230	-1.401517		
17	1 () -2.163586	-1.574672	-1.804750		
18	6 () -0.282421	1.213984	0.112086		
19	1 () -2.176527	1.803760	0.885680		
20	6 (0.451214	0.324811	-0.710405		
21	1 (0.283309	-1.375489	-2.035929		
22	1 (0.248744	1.990724	0.650666		
23	6	1.862228	0.437332	-0.828232		
24	6	3.074790	0.541520	-0.933912		

Table S7. Cartesian coordinates from the optimized structure of **5** at B3LYP/6-31G

25	26	0	5.961862 -0.194275 0.149632
26	6	0	5.353361 -0.187981 -1.832006
27	6	0	4.480391 0.647536 -1.030610
28	6	0	5.305457 1.681994 -0.437553
29	1	0	4.945491 2.472835 0.201424
30	6	0	6.651451 1.481760 -0.873463
31	1	0	7.499493 2.093003 -0.607038
32	6	0	6.681072 0.331082 -1.731508
33	1	0	7.555063 -0.070467 -2.219979
34	6	0	5.865983 -2.153482 0.845826
35	1	0	5.537815 -3.015967 0.287440
36	6	0	5.035478 -1.302329 1.648460
37	1	0	3.970010 -1.402596 1.784946
38	6	0	5.867218 -0.286918 2.227595
39	1	0	5.539784 0.499951 2.888686
40	6	0	7.213942 -0.510517 1.782881
41	1	0	8.076978 0.077482 2.053227
42	6	0	7.213111 -1.663850 0.928851
43	1	0	8.075670 -2.095439 0.445777
44	1	0	5.035977 -1.038144 -2.414929
45	6	0	-10.308190 -1.114910 0.001264
46	7	0	-11.428326 -1.464743 -0.050930
47	1	0	-4.142445 -0.999350 -0.923137
48	6	0	-4.593429 1.839174 0.886388
49	7	0	-4.455281 2.866883 1.441195

Center	Atomic		Atomic	Coordinate	es (Angstroms	ns))	s)	s)
Number	Numb	er	Туре	X Y	Z				
1	6	0	-6.519182	1.347512	0.303569				
2	6	0	-5.171290	1.689929	0.388066				
3	6	0	-4.164905	0.706658	0.304019				
4	6	0	-4.567768	-0.636703	0.161733				
5	6	0	-5.916007	-0.976757	0.078924				
6	6	0	-6.923130	0.007278	0.143452				
7	1	0	-7.268658	2.127064	0.389790				
8	1	0	-4.894053	2.730025	0.522705				
9	1	0	-3.824036	-1.425786	0.139297				
10	1	0	-6.191400	-2.018251	-0.049993				
11	6	0	-2.726189	1.083985	0.368836				
12	6	0	-1.751605	0.334593	-0.232649				
13	6	0	-0.302178	0.477163	-0.276508				
14	6	0	0.403347	-0.378033	-1.159028				
15	6	0	0.457683	1.386489	0.498623				
16	6	0	1.785420	-0.325585	-1.279520				
17	1	0	-0.155421	-1.090027	-1.759982				
18	6	0	1.841620	1.438992	0.385716				
19	1	0	-0.029559	2.052668	1.197617				
20	6	0	2.538277	0.588448	-0.505927				
21	1	0	2.300028	-0.988145	-1.966436				
22	1	0	2.404575	2.141654	0.989880				
23	6	0	3.954246	0.645902	-0.614004				
24	6	0	5.169939	0.708899	-0.714067				
25	26	(8.031684	-0.447508	0.034703				

Table S8. Cartesian coordinates from the optimized structure of 6 at B3LYP/6-31C

26	6	0	7.389890	0.143988	-1.844765
27	6	0	6.578575	0.763964	-0.815482
28	6	0	7.469857	1.548934	0.015426
29	1	0	7.165618	2.143907	0.862035
30	6	0	8.795542	1.412559	-0.500869
31	1	0	9.680778	1.881702	-0.100862
32	6	0	8.746207	0.548385	-1.646236
33	1	0	9.587932	0.258480	-2.255608
34	6	0	7.903117	-2.522952	0.133902
35	1	0	7.573846	-3.181598	-0.654284
36	6	0	7.069737	-1.926997	1.138325
37	1	0	6.001258	-2.046005	1.228301
38	6	0	7.903818	-1.134458	1.995483
39	1	0	7.575080	-0.567527	2.852162
40	6	0	9.254577	-1.240546	1.520659
41	1	0	10.119898	-0.769071	1.959513
42	6	0	9.254313	-2.098545	0.370196
43	1	0	10.119041	-2.383750	-0.208205
44	1	0	7.015088	-0.490653	-2.632216
45	6	0	-8.358426	-0.356309	0.058244
46	6	0	-8.837540	-1.554953	0.627406
47	6	0	-9.281372	0.491297	-0.596490
48	6	0	-10.186790	-1.893442	0.544149
49	1	0	-8.152340	-2.205328	1.160179
50	6	0	-10.628053	0.154568	-0.679317
51	1	0	-8.927095	1.403952	-1.063559
52	6	0	-11.095769	-1.044042	-0.108782
53	1	0	-10.544408	-2.815790	0.994552

54	1	0	-11.337454	0.798318	-1.188278
55	6	0	-12.517485	-1.411573	-0.191305
56	1	0	-12.784984	-2.370903	0.289356
57	8	0	-13.392892	-0.728313	-0.749644
58	1	0	-2.116103	-0.513309	-0.807501
59	6	0	-2.438332	2.297611	1.070250
60	7	0	-2.254164	3.304649	1.649172

Table S9. Cartesian coordinates from the optimized structure of 7 at B3LYP/6-31G

Center	Atomic		Atomic	Coordinat	es (Angstroms
Number	Numb	er	Туре	х ү	Z
1	6	0	10.063896	0.870827	0.049317
2	6	0	8.727618	1.267426	0.129655
3	6	0	7.688972	0.317275	0.206859
4	6	0	8.037363	-1.048835	0.230390
5	6	0	9.370662	-1.453512	0.149533
6	6	0	10.370050	-0.487390	0.054673
7	1	0	10.853155	1.609684	-0.016645
8	1	0	8.489436	2.325542	0.125968
9	1	0	7.268614	-1.804721	0.345576
10	1	0	9.628624	-2.505280	0.175718
11	6	0	6.266361	0.756481	0.266250
12	6	0	5.242148	-0.036193	-0.175218
13	35	C	12.228167	7 -1.048045	5 -0.052499
14	6	0	3.797293	0.152290	-0.189579
15	6	0	3.027193	-0.839590	-0.846716
16	6	0	3.101002	1.232507	0.405375

17	6	0	1.643200	-0.761942	-0.920221
18	1	0	3.536808	-1.681488	-1.306848
19	6	0	1.715639	1.313496	0.336678
20	1	0	3.638866	2.011832	0.927618
21	6	0	0.954213	0.321830	-0.327365
22	1	0	1.078110	-1.533330	-1.431260
23	1	0	1.201622	2.148135	0.800118
24	6	0	-0.462436	0.410339	-0.391365
25	6	0	-1.680946	0.485513	-0.444064
26	6	0	-3.100080	0.570876	-0.502648
27	6	0	-3.791457	1.631007	0.125417
28	6	0	-3.858487	-0.403986	-1.191529
29	6	0	-5.180030	1.708699	0.066410
30	1	0	-3.226167	2.392982	0.650997
31	6	0	-5.245651	-0.321006	-1.240863
32	1	0	-3.344568	-1.225370	-1.679139
33	6	0	-5.940862	0.735235	-0.613456
34	1	0	-5.684125	2.546221	0.536025
35	1	0	-5.803015	-1.091656	-1.762725
36	26	0	-8.850125	-0.394920	0.208170
37	6	0	-9.611967	0.641875	-1.421940
38	6	0	-9.610268	1.482667	-0.259869
39	6	0	-8.259717	1.595322	0.203320
40	1	0	-7.937204	2.159017	1.064611
41	6	0	-7.406519	0.830330	-0.676007
42	6	0	-8.263107	0.234021	-1.676284
43	1	0	-7.936218	-0.375436	-2.503956
44	6	0	-10.057191	-2.058461	0.535390

45	1	0	-10.926872	-2.341798	-0.036485	
46	6	0	-10.049460	-1.216461	1.697707	
47	1	0	-10.912632	-0.756760	2.153051	
48	6	0	-8.693883	-1.107020	2.157428	
49	1	0	-8.358784	-0.549900	3.018121	
50	6	0	-7.864078	-1.881195	1.279499	
51	1	0	-6.794378	-1.997577	1.357736	
52	6	0	-8.705943	-2.469520	0.276968	
53	1	0	-8.382726	-3.117679	-0.522492	
54	1	0	-10.475429	0.374613	-2.010653	
55	1	0	-10.473912	1.950588	0.186043	
56	1	0	5.552463	-0.978557	-0.619747	
57	6	0	6.050618	2.071534	0.786706	
58	7	0	5.925842	3.160542	1.212955	

Table S10. Cartesian coordinates from the optimized structure of 8 at B3LYP/6-31G

Center	Atomic		Atomic	Coordina	ate	es (Angstro	oms)
Number	Numb	er	Туре	X	Y	Z	
1	6	0	4.263745	-1.815910)	0.615062	
2	6	0	2.904438	-1.949589)	0.880599	
3	6	0	1.955610	-1.090659)	0.287169	
4	6	0	2.431299	-0.070021		-0.563192	
5	6	0	3.788479	0.067354		-0.833856	
6	6	0	4.736614	-0.806895	5	-0.253744	
7	1	0	4.974370	-2.493135	5	1.075672	
8	1	0	2.570346	-2.734484	ŀ	1.550815	
9	1	0	1.737487	0.643903	5	-0.993469	

10	1	0	4.133247	0.862950	-1.485217
11	6	0	0.502915	-1.263645	0.557831
12	6	0	-0.458047	-0.845727	-0.323405
13	1	0	-0.075539	-0.431253	-1.252657
14	6	0	-1.913850	-0.872963	-0.268426
15	6	0	-2.608174	-0.454735	-1.431211
16	6	0	-2.690959	-1.271241	0.846636
17	6	0	-3.995045	-0.440356	-1.491225
18	1	0	-2.036314	-0.139916	-2.299651
19	6	0	-4.079374	-1.256821	0.792117
20	1	0	-2.213474	-1.591276	1.762585
21	6	0	-4.764807	-0.843823	-0.375483
22	1	0	-4.500111	-0.118661	-2.395187
23	1	0	-4.654768	-1.565587	1.657808
24	6	0	0.179583	-1.921143	1.787425
25	7	0	-0.036791	-2.470600	2.804524
26	6	0	6.125896	-0.664450	-0.527534
27	6	0	-6.185340	-0.830690	-0.422410
28	6	0	-7.405952	-0.836604	-0.466704
29	26	0	10.160939	0.674045	-0.060617
30	6	0	9.756200	-1.287072	-0.599948
31	6	0	9.297580	0.562876	-1.942749
32	1	0	8.764018	1.346378	-2.457278
33	6	0	10.696379	0.280943	-2.031182
34	1	0	11.415139	0.827036	-2.621944
35	6	0	10.978739	-0.858107	-1.204185
36	1	0	11.946040	-1.315818	-1.067674
37	6	0	10.370514	0.741326	2.009465

38	1	0	10.306551	-0.096484	2.685815
39	6	0	9.279130	1.575244	1.595042
40	1	0	8.248058	1.464153	1.892401
41	6	0	9.796424	2.574770	0.705024
42	1	0	9.225710	3.357387	0.230376
43	6	0	11.209312	2.358479	0.568777
44	1	0	11.887411	2.951499	-0.024672
45	6	0	11.564199	1.225203	1.374903
46	1	0	12.555547	0.816906	1.493786
47	1	0	9.625273	-2.127425	0.063388
48	6	0	7.315549	-0.552538	-0.778751
49	6	0	8.695390	-0.410336	-1.053884
50	26	0	-10.164166	0.675629	-0.011650
51	6	0	-9.712161	-1.270994	0.541628
52	6	0	-11.007566	-0.718649	-1.304512
53	1	0	-11.859196	-0.565447	-1.948698
54	6	0	-9.641520	-0.480970	-1.651536
55	1	0	-9.269409	-0.129018	-2.600745
56	6	0	-8.818705	-0.824115	-0.508604
57	6	0	-9.912580	1.894107	1.657060
58	1	0	-9.578603	1.580684	2.633594
59	6	0	-11.274994	1.946125	1.206866
60	1	0	-12.145084	1.680322	1.786503
61	6	0	-11.277423	2.429531	-0.144542
62	1	0	-12.149516	2.592101	-0.758222
63	6	0	-9.916425	2.676667	-0.529476
64	1	0	-9.585743	3.054043	-1.484320
65	6	0	-9.074117	2.345799	0.583841

66	1	0	-7.997728	2.414860	0.606872
67	1	0	-9.401715	-1.611874	1.516667
68	6	0	-11.050930	-1.205351	0.045488
 69	1	0	-11.940741	-1.479278	0.590473

Figure S26: ¹H NMR (CDCl₃) of 4

Figure S27: ¹³C NMR (CDCl₃) of **4**.

Figure S28: ¹H NMR (CDCl₃) of 5.

Figure S29: ¹³C NMR (CDCl₃) of **5**.

Figure S30: ¹H NMR (CDCl₃) of 6.

Figure S31: ¹³C NMR (CDCl₃) of **6.**

Figure S32: ¹H NMR (CDCl₃) of **7**.

Figure S33: ¹³C NMR (CDCl₃) of **7**.

Figure S34:¹H NMR (CDCl₃) of 8.

Figure S35: ¹³C NMR (CDCl₃) of **8.**

Complete Reference 61

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.(Complete reference 60).