Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorometric detection of Zn(II) in aqueous media

Yong Sung Kim, Jae Jun Lee, Sun Young Lee, Tae Geun Cho, Cheal Kim*

Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail:chealkim@seoultech.ac.kr

Figure S1. Job plot for the binding of **1** with Fe^{3+} . Absorbance at 373 nm was plotted as a function of the molar ratio **1** with Fe^{3+} . The total concentration of Fe^{3+} ions with receptor **1** was 70 μ M.

Figure S2. Li's plot (absorbance at 445 nm) of 1 (20 μ M), assuming 2:1 stoichiometry for association between 1 and Fe³⁺.

Figure S3. Determination of the detection limit based on change in the ratio (absorbance at 445 nm) of 1 (20 μ M) with Fe³⁺.

Figure S4. UV-vis spectral changes of 1 (20 μ M) after the sequential addition of Fe³⁺ and DFO.

Figure S5. Absorbance (at 445 nm) of **1** as a function of Fe(III) concentration. $[1] = 10 \,\mu\text{mol/L}$ and $[Fe(III)] = 0.00-5.00 \,\mu\text{mol/L}$. Conditions: all samples were conducted in bis-tris buffer solution (10 mM, pH 7.0).

Figure S6. UV-vis spectra of receptor **1** (20 μ M) upon the addition of different concentrations of Fe²⁺ in bis-tris buffer solution (10 mM, pH 7.0). Inset: absorption at 445 nm versus the number of equiv of Fe²⁺ added.

Figure S7. Positive-ion electrospray ionization mass spectrum of **1** (0.1 mM) upon addition of Fe^{3+} (0.1 mM).

Figure S8. Job plot for the binding of **1** with Fe^{2+} . Absorbance at 373 nm was plotted as a function of the molar ratio **1** with Fe^{2+} . The total concentration of Fe^{2+} ions with receptor **1** was 70 μ M.

Figure S9. Li's plot (absorbance at 445 nm) of **1** (20 μ M), assuming 2:1 stoichiometry for association between **1** and Fe²⁺.

Figure S10. Determination of the detection limit based on change in the ratio (absorbance at 445 nm) of 1 (20 μ M) with Fe²⁺.

Figure S11. FT-IR spectra of 1, $Fe^{2+}-2\cdot 1$, $Fe^{3+}-2\cdot 1$ and $Zn^{2+}-2\cdot 1$ species.

Figure S12. UV-vis spectra of receptor **1** (30 μ M) upon the addition of different concentrations of Zn²⁺ in bis-tris buffer solution (10 mM, pH 7.0). Inset: absorption at 362 nm versus the number of equiv of Zn²⁺ added.

Figure S13. Job plot for the binding of **1** with Zn^{2+} . Absorbance at 392 nm was plotted as a function of the molar ratio **1** with Zn^{2+} . The total concentration of Zn^{2+} ions with receptor **1** was 60 μ M.

Figure S14. Positive-ion electrospray ionization mass spectrum of 1 (0.1 mM) upon addition of Zn^{2+} (0.1 mM).

Figure S15. Li's plot (intensity at 425 nm) of 1 (20 μ M), assuming 2:1 stoichiometry for association between 1 and Zn²⁺.

Figure S16. Determination of the detection limit based on change in the ratio (absorbance at 425 nm) of 1 (20 μ M) with Zn²⁺.

Figure S17. Fluorescence intensity of $Zn^{2+}-2\cdot 1$ complex (at 425 nm) at different pH values (2-12) in DMF:bis-buffer solution (v/v, 1:1, 10 mM, pH 7.0).

Figure S18. Fluorescence intensity (at 422 nm) of **1** as a function of Zn(II) concentration. [**1**] = 10 μ mol/L and [Zn(II)] = 0.00-9.00 μ mol/L. Conditions: all samples were conducted in DMF:bis-tris buffer solution (v/v, 1:1, 10 mM, pH 7.0). λ_{ex} and λ_{em} were 365 and 422 nm, respectively.

Dihedral angle (1N, 2C, 3C, 4C) : 178.806°

(a)

Dihedral angle (1N, 2C, 3C, 4C) : -179.009° Dihedral angle (1'N, 2'C, 3'C, 4'C) : -179.011°

(b)

Figure S19. Energy-minimized structures of (a) 1 and (b) $Zn^{2+}-2\cdot 1$ complex at B3LYP level.

Figure S20. Molecular orbital diagrams of 1 (left) and $Zn^{2+}-2\cdot 1$ (right) by DFT methods