Supporting Information

2

Moderately oxidized graphene-carbon nanotubes hybrid for high performance capacitive deionization

5	Helan Zhang [†] , Peng Liang [†] *, Yanhong Bian [†] , Yong Jiang [†] , Xueliang Sun [†] , Changyong Zhang [†] , Xia
6	Huang [†] , Fei Wei ^{††}
7	[†] State Key Joint Laboratory of Environment Simulation and Pollution Control
8	School of Environment, Tsinghua University, Beijing, 100084, P.R. China
9	^{††} Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical
10	Engineering, Tsinghua University, Beijing 100084, China
11	*Corresponding author, Tel: +86 10 62796790; E-mail: liangpeng@tsinghua.edu.cn
12	

Fig. S1 Schematic illustration of the moderate oxidation treatment for G-CNTs.

Fig. S2 High-resolution C1s XPS spectra of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h.

Table S1. The carbon and oxygen contents (at. %) in the pristine G-CNTs, activated G-CNTs-1h and G-CNTs-3h.

Sample	C (at. %)	O (at. %)
Pristine G-CNTs	98.2	1.8
Activated G-CNTs-1h	95.7	4.3
Activated G-CNTs-3h	95.3	4.7

Fig. S3 Nitrogen nitrogen adsorption-desorption isotherms of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h.

Table S2. BET surface area and pore volume of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h.

Sample	BET surface area	Pore volume
	(m ² /g)	(cm^{3}/g)
Pristine G-CNTs	1160	1.31
Activated G-CNTs-1h	1254	1.42
Activated G-CNTs-3h	1149	1.24

Fig. S4 CV curves of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h electrodes in 1M NaCl solution
 at a scan rate of 10 mV/s, respectively.

29

Table S3. Specific capacitances (F/g) of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h electrodes in
 1M NaCl solution at a scan rate of 10 mV/s, respectively.

Sample	Specific capacitances (F/g)
Pristine G-CNTs	43.7
Activated G-CNTs-1h	46.5
Activated G-CNTs-3h	38.1

Fig. S5 Nyquist plots of the pristine G-CNTs, the activated G-CNTs-1h and G-CNTs-3h electrodes in 1 M NaCl
 aqueous solution. Inset shows the expanded high-frequency region of the plots.

36

- Fig. S6 The changes in captive bubble contact angle of the pristine G-CNTs electrode (a), the activated G-CNTs-1h
 electrode (b), and the activated G-CNTs-3h electrode (c).
- 43

40

44 Table S4. Comparison of the electrosorption capacity improvement ration of various pretreatments or modifications.

Electrode material	Pretreatment or modification	Improvement ration (times)
Graphene ³⁹	N-doping	1.40
Graphene ⁵⁰	KOH-activated treatment	1.34
Graphene ⁵¹	Ion-selective modification	1.45
Graphene ⁵²	Sulphonation modification	2.10
G-CNTs (this work)	Oxidation treatment	2.14

47 Fig. S7 Fitting regression line by (a) Langmuir and (b) Freundlich equation for the electrosorption of the activated G 48 CNTs-1h electrode.

Table S5. Parameters determined by fitting of Langmuir and Freundlich isotherms for the CDI performance of the
 activated G-CNTs-1h electrode.

Isotherm	Parameters	Value
	$q_{ m m}$	9.871
Langmuir	$K_{ m L}$	0.0271
	r^2	0.9923
	$K_{ m F}$	2.671
Freundlich	п	5.153
	r^2	0.9982