Supporting Information for

Porous three-dimensional activated reduced graphene oxide as anode materials for lithium ion batteries

Xianjun Zhu,*^a Linwen Zuo,^a Shuilin Wu,^b Xiaodi Qu,^a Meng Wei,^a Li He,^a Yu

Zhong^a and Yanwu Zhu*^b

^a College of Chemistry, Central China Normal University, 152 Luoyu Rd, Wuhan, Hubei 430079 (P. R. China)

^b Department of Materials Science and Engineering & CAS Key Laboratory of Materials for Energy Conversion, iChEM, University of Science and Technology of China, 96 Jin Zhai Rd, Hefei, Anhui 230026 (P. R. China).

Supporting figures

Fig. S1 XRD pattern of (a) aMEGO-4, (b) GO, and (c) graphite.

^{*} Corresponding author. Tel/Fax: +86-27-67867953, +86-0551-63607670.

E-mail addresses: xjzhu@mail.ccnu.edu.cn (X. Zhu), zhuyanwu@ustc.edu.cn (Y. Zhu).

Fig. S2 Raman spectra of (a) aMEGO-4, (b) GO, and (c) graphite.

Fig. S3 (a) SEM images of the T-MEGO sample (SSA $\sim 263 \text{ m}^2 \text{ g}^{-1}$) (a) at low-magnification, (b) at high-magnification.

Fig. S4 Electrochemical performance of T-MEGO (SSA ~ 263 m² g⁻¹) sample in 1 M LiPF₆/EC+DEC electrolyte in the potential of $0.005 \sim 3.0$ V. (a) CV curve at the scan rate of 0.05 mV s⁻¹. (b) The first discharge/charge curves at the current density of 100 mA g⁻¹. (c) Cycling performance at the current density of 100 mA g⁻¹. (d) The rate performance at various current densities.

Fig. S5 (a) Comparison of the first discharge/charge curves of the aMEGO samples with different specific surface areas. (b) Comparison of cycling performance of the aMEGO samples at the current density of 100 mA g^{-1} .