Supporting Information

Ruthenium nanoparticles supported over mesoporous TiO_2 as an efficient bifunctinal nanocatalyst for esterification of biomass-derived levulinic acid and transfer-hydrogenation reactions

Usha Mandi,^a Noor Salam,^a Sudipta K. Kundu,^b Asim Bhaumik^{b,*} and Sk. Manirul Islam^{a,*} ^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India ^bDepartment of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India

UV-Vis spectroscopy

Figure 3 showed the UV-visible diffuse reflectance spectra of mesoporous TiO₂ and Ru@MTiO₂. A broad absorption peak in the wavelength range 300-350 nm were observed for titania nanoctystal.¹⁷ In case of Ru@MTiO₂, it exhibited a broad absorption peak in the visible range 600-800 nm due to wide range of visible absorption.¹

Figure S1. UV-Vis spectra of mesoporous TiO₂ and Ru@MTiO₂ nanomaterials.

Thermogravimetric analysis (TGA)

Figure S2 showed the TGA plots of mesoporous TiO₂ and Ru@MTiO₂ nanoparticles under N₂ flow. The TGA curve showed that *ca* 7% weight loss occurs up to *ca*. 103 °C due to desorption of physisorbed water. Decomposition of surfactant molecules starts from the temperature range of 103 °C to 376 °C and 3% weight loss observed on the surface of the nanoparticles. Again, the decomposition of the organic template starts from 376 °C to 593 °C and rapidly loses 6% of its weight. Then, weight loss of another ~ 1.0% occurs gradually till the temperature reached upto 800 °C. In case of Ru@MTiO₂ nanoparticles, same weight loss occurs up to 103 °C due to desorption of water. Only 2 % weight loss showed by Ru@MTiO₂ from 103 °C to 610 °C and less than 2% weight occurs up to 800 °C, which confirmed that Ru@MTiO₂ is more thermally stable than TiO₂ nanoparticle.

Figure S2. TGA plots of mesoporous TiO₂ and Ru@MTiO₂ nanomaterials.

¹H NMR data of esterification reactions:

Methyl levulinate (Table 1, entry 1): ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.20 (s, 3H), 2.58 (t, J = 6.8 Hz, 2H), 2.77 (t, J = 6.4 Hz, 2H), 3.68 (s, 1H).

Ethyl levulinate (Table 1, entry 2): ¹H NMR (400 MHz, CDCl₃) δ ppm: 1.18 (t, J =7.2 Hz, 3H), 2.12 (s, 3H), 2.49 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 6.4 Hz, 2H), 4.03-4.08 (m, 2H).

Figure S3. ¹H NMR spectra of methyl levulinate in CDCl₃.

Figure S4. ¹H NMR spectra of ethyl levulinate in CDCl₃.

References

1. S. Bang, S. Lee, T. Park, Y. Ko, S. Shin, S.-Y. Yim, H. Seo and H. Jeon, *J. Mater. Chem.*, 2012, **22**, 14141