Electronic Supplementary Information

Self-assembly of fluorescentdiimidazolium salts: tailor properties of the aggregates changing alkyl chain features

FlorianaBilleci, Francesca D'Anna,* Salvatore Marullo, Renato Noto

Synthesis of N,N'-bis-(3-imidazol-yl-propyl)naphthalene-diimide.	S 1				
General synthesis of <i>N</i> , <i>N</i> '-bis-(1-alkyl-3-propylimidazolium)naphthalene-diimidediiodidesalts.					
Synthesis of <i>N</i> , <i>N</i> '-bis-[1-propyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)					
imidazolium]-naphthalene-diimidediiodide[C ₈ FNDI][I].	S2				
Synthesis of <i>N</i> , <i>N</i> '-bis-[1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12,12-					
$enicos a fluorodo decyl) - 3 - propylimidazolium] - naphthalene - diimidediiodi de [C_{12} FNDI] [I] \ .$					
Determination of thermodynamic parameters from temperature dependentmeasurements					
Table S1. Melting temperatures, enthalpy and entropy values determined by DSC					
Measurements.	S5				
Table S2. Salts concentration corresponding to the onset of aggregation (Con) for					
$[C_nNDI][I]$ salts as a function of solvent.	S5				
Table S3. Position of main emission band (λ_{max}) in solution and in solid state as a function					
of alkyl chain and solvent.	S5				
Figure S1. DSC thermograms of the synthesized salts.	S6-S7				
Figure S2. UV-vis and fluorescence spectra of salts as function of solvent.	S7-S9				
Figure S3. UV-vis and fluorescence spectra of salts as a function of concentration and					
solvent	S9-S14				
Figure S4. Absorbance and fluorescence intensity as a function of concentration					
and solvent.	S14-S20				
Figure S5. Plot of α_{agg} as a function of concentration and solvent.	S20-S23				
Figure S6. UV-vis spectra at fixed concentration as a function of temperature.	S23-S24				
Figure S7. α and van't Hoff plotof UV-vis analysis at variable temperature and					
fixed concentration. S25-S2	7				
Figure S8. Plot of (a) ΔH and (b) ΔS as a function of the alkyl chain length.	S28				
Figure S9. ¹ H NMR spectra at variable temperature of [C ₆ NDI][I] in DMSO-[d ₆],					
$[C_{12}NDI][I]$ in DMSO- $[d_6]$ and $[C_{12}NDI][I]$ in CD_2Cl_2 - $[d_2]$.	S29-S31				
Figure S10. ¹ H NMR spectra at variable temperature of $[C_8FNDI][I]$ in DMSO- $[d_6]$ and					
$[C_{12}FNDI][I]$ in DMSO- $[d_6]$.	S32-S33				
Figure S11. Fluorescence spectra in solution and in solid phase of salts.	S34-S35				
Figure S12. SEM images.	S36				
Figure S13. ¹ H NMR and ¹³ C NMR spectra of synthesized salts.	S37-S44				
Figure S14. ESI mass spectra of synthesized salts.	S45-S46				

Synthesis of *N*,*N*'-bis-(3-imidazol-yl-propyl)naphthalene-diimide.

1,4,5,8-naphthalenetetracarboxylic dianhydride (1.00 g; $3.73 \cdot 10^{-3}$ mol) was dissolved in 12.5 mL of anhydrous DMF, and the solution obtained was heated at 80 °C. Into a two-neck flask, 1-(3-aminopropyl)imidazole (1.026 g; $8.21 \cdot 10^{-3}$ mol) was dissolved in 12.5 mL of anhydrous DMF and obtained solution was heated at 140 °C.

The solution of 1,4,5,8-naphthalenetetracarboxylic dianhydride was added to the 1-(3-aminopropyl)imidazole solution. The mixture was stirred at 140 °C for 24 hours.

The resulting mixture was allowed to cool down, poured in water/acetone (3/1; 30 mL) mixture, then in cold diethyl ether. Stirring for 30 minutes afforded a dark precipitate. The solid was filtered off in vacuo and thoroughly washed with diethyl ether and small amounts of ethanol.

Yield: 70%; dark solid.¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 8.63 (s, 4H); 7.66 (s, 2H); 7.21 (s, 2H); 6.87 (s, 2H); 4.10 (m, 8H); 2.13 (m, 4H).

General synthesis of N,N'-bis-(1-alkyl-3-propylimidazolium)naphthalene-diimidediiodide salts.

N,*N*'-bis-(3-imidazol-yl-propyl)naphthalene-diimide (0.25 g; $5.19 \cdot 10^{-4}$ mol) was dissolved in 10 mL of anhydrous DMF, and solution obtained was heated at 80 °C. Into a two-neck flask, the suitable alkyl iodide (1.14·10⁻³mol) was dissolved in 10 mL of anhydrous DMF; the solution was then heated at 90 °C.

The solution of N,N'-bis-(3-imidazol-yl-propyl)naphthalene-diimide was added to the alkyl iodide solution. The mixture was stirred at 90 °C for 72 hours.

The solvent was removed in vacuo and the dark solid obtained was washed with diethyl ether (20 mL), with ultrasounds irradiation until a colourless organic phase was obtained. Finally, the dark solid was washed with refluxing ethyl acetate (50 mL) overnight.

N,N'-bis-(1-hexyl-3-propylimidazolium)naphthalene-diimidediiodide [C₆NDI][I].

Yield: 90%; dark solid; m. p.: 170.8 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.21 (s, 2H); 8.70 (s, 4H); 7.83 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.28 (m, 4H), 1.79 (m, 4H), 1.27 (bs, 12H), 0.86 (m, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 136.6; 130.9; 126.9; 122.9; 49.4; 47.5; 31.0; 29.7; 28.6; 25.5; 22.3; 14.2.HRMS calcd. for C₃₈H₄₈N₆O₄ 326.1863, found 326.1899.

N,N'-bis-(1-heptyl-3-propylimidazolium)naphthalene-diimmidediiodide [C₇NDI][I].

Yield: 87%; dark solid; m. p.: 170.1°C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.25 (s, 2H); 8.70 (s, 4H); 7.83 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.27 (m, 4H); 1.79 (m, 4H); 1.25 (m, 16H); 0.84 (t, J = 4.0 Hz, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 136.6; 130.9; 126.9; 126.7; 122.9; 31.7; 29.4; 25.9; 22.5; 14.4.HRMS calcd. for C₄₀H₅₂N₆O₄ 340.2019, found 340.2057.

N,N'-bis-(1-octyl-3-propylimidazolium)naphthalene-diimidediiodide [C₈NDI][I].

Yield: 83%; dark solid; m. p.: 146.9 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.21 (s, 2H); 8.70 (s, 4H); 7.83 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.28 (m, 4H); 1.80 (m, 4H); 1.25 (m, 20H); 0.84 (m, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 130.9; 130.8; 126.9; 123.0; 122.9; 49.4; 47.4; 31.6; 31.4; 29.7; 28.9; 25.9; 22.4; 14.3.HRMS calcd. for C₄₂H₅₆N₆O₄ 354.2176, found 354.2213.

N,N'-bis-(1-nonyl-3-propylimidazolium)naphthalene-diimidediiodide [C₉NDI][I].

Yield: 85%; dark solid; m. p.: 200.2°C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.21 (s, 2H); 8.70 (s, 4H); 7.83 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.28 (m, 4H); 1.79 (s, 4H); 1.24 (m, 24H); 0.83 (m, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 136.6; 130.9; 126.9; 122.9; 49.3; 37.6; 31.7; 30.6; 29.8; 29.0; 25.9; 22.5; 14.4.HRMS calcd. for C₄₄H₆₀N₆O₄ 368.2332, found 368.2337.

N,N'-bis-(1-decyl-3-propylimidazolium)naphthalene-diimidediiodide [C₁₀NDI][I].

Yield: 85%; dark solid; m. p.: 104.0 – 106.8 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.22 (s, 2H); 8.70 (s, 4H); 7.84 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.27 (m, 4H); 1.79 (m, 4H); 1.22 (m, 28H); 0.83 (m, 6H). ¹³C-NMR (300 MHz, DMSO-d₆); δ (ppm): 163.4; 136.6; 130.9; 126.9; 126.7; 122.9; 55.5; 49.4; 47.4; 37.7; 34.8; 31.7; 29.8; 29.4; 29.3; 29.1; 28.8; 25.9; 22.5; 14.4.HRMS calcd. for C₄₄H₆₀N₆O₄ 382.2489, found 382.2500

N,N'-bis-(1-propyl-3-undecylimidazolium)naphthalene-diimidediiodide [C₁₁NDI][I].

Yield: 88%; dark solid; m. p.: 202.6 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.21 (s, 2H); 8.70 (s, 4H); 7.83 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.27 (m, 4H); 1.79 (m, 4H); 1.22 (m, 32H); 0.83 (m, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 136.6; 130.9; 126.9; 126.7; 122.9; 49.4; 47.4; 46.6; 37.6; 34.9; 31.7; 29.7; 29.4; 29.2; 29.1; 28.8; 28.5; 25.9; 22.5; 14.4.HRMS calcd. for C₄₆H₆₄N₆O₄ 396.2645, found 396.2656.

N,N'-bis-(1-dodecyl-3-propylimidazolium)naphthalene-diimidediiodide [C₁₂NDI][I].

Yield: 88%; dark solid; m. p.: 144.0°C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.22 (s, 2H); 8.70 (s, 4H); 7.84 (d, J = 8.0 Hz, 4H); 4.32 (m, 5H); 4.17 (m, 7H); 2.27 (m, 4H); 1.79 (s, 4H); 1.20 (m, 36H); 0.83 (m, 6H). ¹³C-NMR (400 MHz, DMSO-d₆); δ (ppm): 163.3; 156.1; 136.6; 131.1; 130.9; 129.8; 126.9; 122.9; 108.2; 49.4; 47.4; 31.4; 29.8; 28.5; 25.9; 24.5; 22.4; 14.3; 9.1.HRMS calcd. for C₄₈H₆₈N₆O₄ 410.2802, found 410.2813.

Synthesis of*N*,*N'*-bis-[1-propyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)imidazolium]naphthalene-diimidediiodide [C₈FNDI][I].

N,*N*'-bis-(3-imidazol-yl-propyl)naphthalene-diimide (0.100 g; $2.075 \cdot 10^{-4}$ mol) was dissolved in 5 mL of anhydrous DMF, and the solution obtained was heated at 80 °C. Into a two-neck flask, 1,1,2,2-tetrahydroperfluorooctiliodide (0.216 g; $4.56 \cdot 10^{-4}$ mol) was dissolved in 5 mL of anhydrous DMF; the solution was heated at 80 °C. The solution of *N*,*N*'-bis-(3-imidazol-yl-propyl)naphthalene-diimide was added to the solution of alkyl iodide. The mixture was stirred, under argon atmosphere at 80 °C for 4 days.

The solvent was removed in vacuo and the dark solid obtained was washed with diethyl ether (20 mL), with ultrasounds irradiation until a colourless organic phase was obtained. Finally, the dark solid was washed with refluxing ethyl acetate (50 mL) overnight.

Yield: 81%; dark solid; m. p.: 179.2 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.30 (s, 2H); 8.86-8.71 (m, 6H); 7.91-7.54 (m, 8H); 4.59 (m, 2H); 4.37 (m, 5H); 4.15 (m, 5H); 2.27 (m, 8H). HRMS calcd. for C₄₂H₃₀F₂₆N₆O₄ 588.0951, found 588.0945.

Synthesis of N,N'-bis-[1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-enicosafluorododecyl)-3-propylimidazolium]-naphthalene-diimidediiodide [C₁₂FNDI][I].

N,*N*'-bis-(3-imidazol-yl-propyl)naphthalene-diimide (0.100 g; $2.075 \cdot 10^{-4}$ mol) was dissolved in 5 mL of anhydrous DMF and the solution obtained was heated at 80 °C. Into a two-neck flask, 1,1,2,2-tetrahydroperfluorododecyliodide (0.31 g; $4.56 \cdot 10^{-4}$ mol) was dissolved in 5 mL of anhydrous DMF; the solution was heated at 120 °C.

The solution of N,N'-bis-(3-imidazol-yl-propyl)naphthalene-diimide was added to the solution of alkyl iodide. The mixture obtained was stirred, under argon atmosphere, at 120 °C for 4 days.

The solvent was removed in vacuo and the dark solid obtained was washed with diethyl ether (20 mL) with ultrasounds irradiation until a colourless organic phase was obtained. Finally, the dark solid was washed with refluxing ethyl acetate (50 mL) overnight.

Yield: 50%; dark solid; m. p.: 182.2 °C. ¹H-NMR (400 MHz, DMSO-d₆); δ (ppm): 9.30 (s, 2H); 8.87-8.70 (m, 6H); 7.92-7.56 (m, 8H); 4.58 (m, 2H); 4.30 (m, 5H); 4.11 (m, 5H); 2.25 (m, 8H).

HRMS calcd. for $C_{50}H_{30}F_{42}N_6O_4$ 788.0902, found 788.0823.

Determination of thermodynamic parameters from temperature dependent measurements

To determine the thermodynamic parameters we used the procedure reported by Meijer et al.^[1] To this aim, we first calculated the number averaged degree of polymerization at each temperature DP_n (T) by means of equation (1).

$$DP_n(T) = \frac{1}{\sqrt{1 - \alpha_{agg}(T)}} \tag{1}$$

At a given temperature DP_n is related to the association constant K_{ass} by equation (2), rearrangement of which yields K_{ass} as expressed by equation (3), where C_T is the total concentration of salt.

$$DP_n(T) = \frac{1}{2} + \frac{1}{2}\sqrt{4 \cdot K_{ass}(T) \cdot C_T + 1}$$
 (2)

$$K_{ass} = \frac{\left[(2 \cdot DP_n(T) - 1)^2 - 1 \right]}{4 \cdot C_T}$$
(3)

[1] M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. de Greef, P. van der Schoot, A. P. H. J. Schenning, E. W. Meijer, *Chem. Eur. J.* **2010**, *16*, 362-367.

Salt	<i>T</i> _m (°C)	$\Delta H_{\rm m}$ (J/mol)	$\Delta S_{\rm m}$ (J/K mol)
[C ₆ NDI][I]	170.8	316	1.0
[C ₇ NDI][I]	170.1	4000	9.0
[C ₈ NDI][I]	146.9	792	2.0
[C ₉ NDI][I]	200.2	1344	3.0
[C ₁₀ NDI][I]	-	-	-
[C ₁₁ NDI][I]	202.6	1420	3.0
[C ₁₂ NDI][I]	144.0	4600	11.0
[C ₈ FNDI][I]	179.2	3440	8.0
[C ₁₂ FNDI][I]	182.2	4920	11.0

Table S1. Melting temperatures, enthalpy and entropy values determined by DSC measurements.

Table S2.Salts concentration corresponding to the onset of aggregation (C_{on}) for [CnNDI][I] salts as a function of solvent.

Salt	$10^6 \cdot C_{on,THF} \square \square M \square$	$10^6 \cdot C_{on, DMF} \square \square M \square$	$10^6 \cdot C_{onCHCl3} \square \square M \square$	$10^6 \cdot C_{on,1,4-Diox} \square \square M \square$
[C ₆ NDI][I]	2.6	2.3		
[C7NDI][I]	5.5	1.8		
[C ₈ NDI][I]	3.1	1.1		
[C ₉ NDI][I]	2.4	2.0		
[C ₁₀ NDI][I]	3.3	1.9		
[C ₁₁ NDI][I]	1.9	1.3		
[C ₁₂ NDI][I]	1.0	2.4	3.0	2.6
[C ₈ FNDI][I]		2.7		
[C ₁₂ FNDI][I]		3.3		

Table S3.Position of main emission band (λ_{max}) in solution and in solid state as a function of alkyl chain and solvent.

λ_{\max} (nm)								
]	ſHF	DMF		CHCl ₃		1,4-dioxane	
Salt	Solid	Solution	Solid	Solution	Solid	Solution	Solid	Solution
	state		state		state		state	
[C ₆ NDI][I]	376	410						
[C7NDI][I]	375	408						
[C ₈ NDI][I]	375	408						
[C9NDI][I]	375	393						
[C ₁₀ NDI][I]	375	408						
[C ₁₁ NDI][I]	375	408						
[C ₁₂ NDI][I]	375	410	375	419	375	410	376	420

Figure S1. DSC thermograms of the synthesized salts.

Figure S2. UV-vis and fluorescence spectra of salts as function of solvent. Fluorescence intensities are in arbitrary units.

Figure S3. UV-vis and fluorescence ($\lambda_{ex} = 362 \text{ nm}$) of salts as a function of concentration and solvent. Fluorescence intensities are in arbitrary units.

Figure S4. Absorbance and fluorescence intensity (arbitrary units) as a function of concentration and solvent. (Inset: trend of ϵ as a function of concentration; trend of I/C as function of concentration). I/C values were determined at 415 nm for [C₈NDI][I] in DMF, [C₁₀NDI][I] in THF and DMF. Moreover, I/C was determined at 533 nm for [C₁₂NDI][I] in dioxane, 435 nm [C₁₂NDI][I] in CHCl₃ and at 422 nm in all other cases.

Figure S5. Plot of α_{agg} as a function of concentration and solvent. α_{agg} was determined at 415 nm for [C₈NDI][I] in DMF, (C₁₀NDI][I] in THF and DMF. α_{agg} was determined at 533 nm for [C₁₂NDI][I] in dioxane, at 435 nm at [C₁₂NDI][I] in CHCl₃ and at 422 nm in all the other cases.

Figure S6. UV-vis spectra at fixed concentration $(5 \cdot 10^{-5} \text{ M})$ as a function of temperature.

Figure S7. α and van't Hoff plots of UV-vis analysis at variable temperature and fixed concentration (5·10⁻⁵ M). α_{agg} was determined at 382 nm for [C₆NDI][I], at 380 nm for [C₇NDI][I], at 375 nm for [C₈NDI][I], at 377 for [C₉NDI][I], at 375 nm for [C₁₀NDI][I] and at 374 nm [C₁₁NDI][I].

Figure S8. Plots of (a) ΔH and (b) ΔS as a function of the alkyl chain length.

Figure S9. ¹H NMR spectra at variable temperature of (a)[C_6NDI][I] in DMSO-[d_6], (b)[$C_{12}NDI$][I] in DMSO-[d_6] and (c)[$C_{12}NDI$][I] in CD₂Cl₂-[d_2] respectively.

Figure S10. ¹H NMR spectra at variable temperature of (a)[C_8FNDI][I] in DMSO-[d₆] and (b)[$C_{12}FNDI$][I] in DMSO-[d₆] respectively.

Figure S11. Fluorescent spectra in solution and in solid phase of salts. Fluorescence intensities are in arbitrary units. Excitation wavelength for solid-phase spectra are: 275 nm for $[C_6NDI][I]$, 277 nm for $[C_7NDI][I]$, 272 nm for $[C_8NDI][I]$, and $[C_{10}NDI][I]$, 274 nm for $[C_{12}NDI][I]$ deriving from drop-casting of solution in dioxane and chloroform. Excitation wavelength for solution-phase spectra are: 375 nm for $[C_6NDI][I]$, 380 nm for $[C_7NDI][I]$, 380 nm for $[C_7NDI][I]$, 380 nm for $[C_{12}NDI][I]$, and $[C_{10}NDI][I]$ and $[C_{10}NDI][I]$, 381 nm for $[C_{11}NDI][I]$, 380 nm for $[C_{12}NDI][I]$ in dioxane and 383 nm for $[C_{12}NDI][I]$ in chloroform.

Figure S12. SEM images collected at $5 \cdot 10^{-5}$ M from casting of (a) [C₆NDI][I] in THF; (b) [C₆NDI][I] in DMF; (c) [C₁₂NDI][I] in DMF; (d) and (e) [C₁₂FNDI][I] in DMF.

Figure S13.¹HNMR and ¹³C NMR spectra of synthesized salts.

Figure S14.ESI Mass spectra of synthesized salts.